ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq2 Unicode version

Theorem f1eq2 5031
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq2  F : -1-1-> C  F : -1-1-> C

Proof of Theorem f1eq2
StepHypRef Expression
1 feq2 4974 . . 3  F : --> C  F :
--> C
21anbi1d 438 . 2  F : --> C  Fun  `' F  F : --> C  Fun  `' F
3 df-f1 4850 . 2  F : -1-1-> C  F : --> C  Fun  `' F
4 df-f1 4850 . 2  F : -1-1-> C  F : --> C  Fun  `' F
52, 3, 43bitr4g 212 1  F : -1-1-> C  F : -1-1-> C
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wb 98   wceq 1242   `'ccnv 4287   Fun wfun 4839   -->wf 4841   -1-1->wf1 4842
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-4 1397  ax-17 1416  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-cleq 2030  df-fn 4848  df-f 4849  df-f1 4850
This theorem is referenced by:  f1oeq2  5061  f1eq123d  5064  brdomg  6165
  Copyright terms: Public domain W3C validator