ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exdistr2 Unicode version

Theorem exdistr2 1791
Description: Distribution of existential quantifiers. (Contributed by NM, 17-Mar-1995.)
Assertion
Ref Expression
exdistr2  |-  ( E. x E. y E. z ( ph  /\  ps )  <->  E. x ( ph  /\ 
E. y E. z ps ) )
Distinct variable groups:    ph, y    ph, z
Allowed substitution hints:    ph( x)    ps( x, y, z)

Proof of Theorem exdistr2
StepHypRef Expression
1 19.42vv 1788 . 2  |-  ( E. y E. z (
ph  /\  ps )  <->  (
ph  /\  E. y E. z ps ) )
21exbii 1496 1  |-  ( E. x E. y E. z ( ph  /\  ps )  <->  E. x ( ph  /\ 
E. y E. z ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98   E.wex 1381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator