Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcn | Unicode version |
Description: A decidable proposition is decidable when negated. (Contributed by Jim Kingdon, 25-Mar-2018.) |
Ref | Expression |
---|---|
dcn | DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 559 | . . . 4 | |
2 | 1 | orim2i 678 | . . 3 |
3 | 2 | orcoms 649 | . 2 |
4 | df-dc 743 | . 2 DECID | |
5 | df-dc 743 | . 2 DECID | |
6 | 3, 4, 5 | 3imtr4i 190 | 1 DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wo 629 DECID wdc 742 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 |
This theorem depends on definitions: df-bi 110 df-dc 743 |
This theorem is referenced by: pm5.18dc 777 pm4.67dc 781 pm2.54dc 790 imordc 796 pm4.54dc 805 stabtestimpdc 824 annimdc 845 pm4.55dc 846 pm3.12dc 865 pm3.13dc 866 dn1dc 867 xor3dc 1278 dfbi3dc 1288 dcned 2212 |
Copyright terms: Public domain | W3C validator |