ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcn Unicode version

Theorem dcn 746
Description: A decidable proposition is decidable when negated. (Contributed by Jim Kingdon, 25-Mar-2018.)
Assertion
Ref Expression
dcn  |-  (DECID  ph  -> DECID  -.  ph )

Proof of Theorem dcn
StepHypRef Expression
1 notnot 559 . . . 4  |-  ( ph  ->  -.  -.  ph )
21orim2i 678 . . 3  |-  ( ( -.  ph  \/  ph )  ->  ( -.  ph  \/  -.  -.  ph ) )
32orcoms 649 . 2  |-  ( (
ph  \/  -.  ph )  ->  ( -.  ph  \/  -.  -.  ph ) )
4 df-dc 743 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
5 df-dc 743 . 2  |-  (DECID  -.  ph  <->  ( -.  ph  \/  -.  -.  ph ) )
63, 4, 53imtr4i 190 1  |-  (DECID  ph  -> DECID  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 629  DECID wdc 742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630
This theorem depends on definitions:  df-bi 110  df-dc 743
This theorem is referenced by:  pm5.18dc  777  pm4.67dc  781  pm2.54dc  790  imordc  796  pm4.54dc  805  stabtestimpdc  824  annimdc  845  pm4.55dc  846  pm3.12dc  865  pm3.13dc  866  dn1dc  867  xor3dc  1278  dfbi3dc  1288  dcned  2212
  Copyright terms: Public domain W3C validator