ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con1biidc Unicode version

Theorem con1biidc 771
Description: A contraposition inference. (Contributed by Jim Kingdon, 15-Mar-2018.)
Hypothesis
Ref Expression
con1biidc.1  |-  (DECID  ph  ->  ( -.  ph  <->  ps ) )
Assertion
Ref Expression
con1biidc  |-  (DECID  ph  ->  ( -.  ps  <->  ph ) )

Proof of Theorem con1biidc
StepHypRef Expression
1 notnotbdc 766 . . 3  |-  (DECID  ph  ->  (
ph 
<->  -.  -.  ph )
)
2 con1biidc.1 . . . 4  |-  (DECID  ph  ->  ( -.  ph  <->  ps ) )
32notbid 592 . . 3  |-  (DECID  ph  ->  ( -.  -.  ph  <->  -.  ps )
)
41, 3bitrd 177 . 2  |-  (DECID  ph  ->  (
ph 
<->  -.  ps ) )
54bicomd 129 1  |-  (DECID  ph  ->  ( -.  ps  <->  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 98  DECID wdc 742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630
This theorem depends on definitions:  df-bi 110  df-dc 743
This theorem is referenced by:  con2biidc  773  necon1abiidc  2265  necon1bbiidc  2266
  Copyright terms: Public domain W3C validator