ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con1bdc Unicode version

Theorem con1bdc 772
Description: Contraposition. Bidirectional version of con1dc 753. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
con1bdc  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( -.  ph  ->  ps )  <->  ( -.  ps  ->  ph ) ) ) )

Proof of Theorem con1bdc
StepHypRef Expression
1 con1dc 753 . . . 4  |-  (DECID  ph  ->  ( ( -.  ph  ->  ps )  ->  ( -.  ps  ->  ph ) ) )
21adantr 261 . . 3  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( -. 
ph  ->  ps )  -> 
( -.  ps  ->  ph ) ) )
3 con1dc 753 . . . 4  |-  (DECID  ps  ->  ( ( -.  ps  ->  ph )  ->  ( -.  ph 
->  ps ) ) )
43adantl 262 . . 3  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( -. 
ps  ->  ph )  ->  ( -.  ph  ->  ps )
) )
52, 4impbid 120 . 2  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( -. 
ph  ->  ps )  <->  ( -.  ps  ->  ph ) ) )
65ex 108 1  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( -.  ph  ->  ps )  <->  ( -.  ps  ->  ph ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98  DECID wdc 742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630
This theorem depends on definitions:  df-bi 110  df-dc 743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator