ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2biidc Unicode version

Theorem con2biidc 772
Description: A contraposition inference. (Contributed by Jim Kingdon, 15-Mar-2018.)
Hypothesis
Ref Expression
con2biidc.1 DECID
Assertion
Ref Expression
con2biidc DECID

Proof of Theorem con2biidc
StepHypRef Expression
1 con2biidc.1 . . . 4 DECID
21bicomd 129 . . 3 DECID
32con1biidc 770 . 2 DECID
43bicomd 129 1 DECID
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wb 98  DECID wdc 741
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629
This theorem depends on definitions:  df-bi 110  df-dc 742
This theorem is referenced by:  dfexdc  1387  nnedc  2208
  Copyright terms: Public domain W3C validator