Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11ev Unicode version

Theorem ax11ev 1709
 Description: Analogue to ax11v 1708 for existential quantification. (Contributed by Jim Kingdon, 9-Jan-2018.)
Assertion
Ref Expression
ax11ev
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem ax11ev
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 a9e 1586 . 2
2 ax11e 1677 . . . . 5
3 ax-17 1419 . . . . . 6
4319.9h 1534 . . . . 5
52, 4syl6ib 150 . . . 4
6 equequ2 1599 . . . . 5
76anbi1d 438 . . . . . . 7
87exbidv 1706 . . . . . 6
98imbi1d 220 . . . . 5
106, 9imbi12d 223 . . . 4
115, 10mpbii 136 . . 3
1211exlimiv 1489 . 2
131, 12ax-mp 7 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wceq 1243  wex 1381 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427 This theorem depends on definitions:  df-bi 110 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator