ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.27h Unicode version

Theorem 19.27h 1452
Description: Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.27h.1  |-  ( ps 
->  A. x ps )
Assertion
Ref Expression
19.27h  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  ps ) )

Proof of Theorem 19.27h
StepHypRef Expression
1 19.26 1370 . 2  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  A. x ps ) )
2 19.27h.1 . . . 4  |-  ( ps 
->  A. x ps )
3219.3h 1445 . . 3  |-  ( A. x ps  <->  ps )
43anbi2i 430 . 2  |-  ( ( A. x ph  /\  A. x ps )  <->  ( A. x ph  /\  ps )
)
51, 4bitri 173 1  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-4 1400
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  aaanh  1478  19.27v  1779
  Copyright terms: Public domain W3C validator