MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsneng Structured version   Visualization version   GIF version

Theorem xpsneng 7930
Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.)
Assertion
Ref Expression
xpsneng ((𝐴𝑉𝐵𝑊) → (𝐴 × {𝐵}) ≈ 𝐴)

Proof of Theorem xpsneng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 5052 . . 3 (𝑥 = 𝐴 → (𝑥 × {𝑦}) = (𝐴 × {𝑦}))
2 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
31, 2breq12d 4596 . 2 (𝑥 = 𝐴 → ((𝑥 × {𝑦}) ≈ 𝑥 ↔ (𝐴 × {𝑦}) ≈ 𝐴))
4 sneq 4135 . . . 4 (𝑦 = 𝐵 → {𝑦} = {𝐵})
54xpeq2d 5063 . . 3 (𝑦 = 𝐵 → (𝐴 × {𝑦}) = (𝐴 × {𝐵}))
65breq1d 4593 . 2 (𝑦 = 𝐵 → ((𝐴 × {𝑦}) ≈ 𝐴 ↔ (𝐴 × {𝐵}) ≈ 𝐴))
7 vex 3176 . . 3 𝑥 ∈ V
8 vex 3176 . . 3 𝑦 ∈ V
97, 8xpsnen 7929 . 2 (𝑥 × {𝑦}) ≈ 𝑥
103, 6, 9vtocl2g 3243 1 ((𝐴𝑉𝐵𝑊) → (𝐴 × {𝐵}) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {csn 4125   class class class wbr 4583   × cxp 5036  cen 7838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-en 7842
This theorem is referenced by:  xp1en  7931  xpsnen2g  7938  xpdom3  7943  disjen  8002  unxpdom2  8053  sucxpdom  8054  uncdadom  8876  cdaun  8877  cdaen  8878  cda1dif  8881  cdacomen  8886  cdaassen  8887  xpcdaen  8888  mapcdaen  8889  cdaxpdom  8894  cdafi  8895  cdainf  8897  infcda1  8898  pwcdadom  8921  isfin4-3  9020  pwcdandom  9368  gchxpidm  9370  frlmiscvec  20007
  Copyright terms: Public domain W3C validator