HomeHome Metamath Proof Explorer
Theorem List (p. 80 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 7901-8000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdomentr 7901 Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremf1imaeng 7902 A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.)
((𝐹:𝐴1-1𝐵𝐶𝐴𝐶𝑉) → (𝐹𝐶) ≈ 𝐶)
 
Theoremf1imaen2g 7903 A one-to-one function's image under a subset of its domain is equinumerous to the subset. (This version of f1imaen 7904 does not need ax-reg 8380.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
(((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ≈ 𝐶)
 
Theoremf1imaen 7904 A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by NM, 30-Sep-2004.)
𝐶 ∈ V       ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶) ≈ 𝐶)
 
Theoremen0 7905 The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.)
(𝐴 ≈ ∅ ↔ 𝐴 = ∅)
 
Theoremensn1 7906 A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.)
𝐴 ∈ V       {𝐴} ≈ 1𝑜
 
Theoremensn1g 7907 A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.)
(𝐴𝑉 → {𝐴} ≈ 1𝑜)
 
Theoremenpr1g 7908 {𝐴, 𝐴} has only one element. (Contributed by FL, 15-Feb-2010.)
(𝐴𝑉 → {𝐴, 𝐴} ≈ 1𝑜)
 
Theoremen1 7909* A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
(𝐴 ≈ 1𝑜 ↔ ∃𝑥 𝐴 = {𝑥})
 
Theoremen1b 7910 A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.)
(𝐴 ≈ 1𝑜𝐴 = { 𝐴})
 
Theoremreuen1 7911* Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
(∃!𝑥𝐴 𝜑 ↔ {𝑥𝐴𝜑} ≈ 1𝑜)
 
Theoremeuen1 7912 Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
(∃!𝑥𝜑 ↔ {𝑥𝜑} ≈ 1𝑜)
 
Theoremeuen1b 7913* Two ways to express "𝐴 has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.)
(𝐴 ≈ 1𝑜 ↔ ∃!𝑥 𝑥𝐴)
 
Theoremen1uniel 7914 A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.)
(𝑆 ≈ 1𝑜 𝑆𝑆)
 
Theorem2dom 7915* A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.)
(2𝑜𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
 
Theoremfundmen 7916 A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
𝐹 ∈ V       (Fun 𝐹 → dom 𝐹𝐹)
 
Theoremfundmeng 7917 A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.)
((𝐹𝑉 ∧ Fun 𝐹) → dom 𝐹𝐹)
 
Theoremcnven 7918 A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.)
((Rel 𝐴𝐴𝑉) → 𝐴𝐴)
 
Theoremfndmeng 7919 A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝐹 Fn 𝐴𝐴𝐶) → 𝐴𝐹)
 
Theoremmapsnen 7920 Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝑚 {𝐵}) ≈ 𝐴
 
Theoremmap1 7921 Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.)
(𝐴𝑉 → (1𝑜𝑚 𝐴) ≈ 1𝑜)
 
Theoremen2sn 7922 Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.)
((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})
 
Theoremsnfi 7923 A singleton is finite. (Contributed by NM, 4-Nov-2002.)
{𝐴} ∈ Fin
 
Theoremfiprc 7924 The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.)
Fin ∉ V
 
Theoremunen 7925 Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
(((𝐴𝐵𝐶𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐴𝐶) ≈ (𝐵𝐷))
 
Theoremssct 7926 Any subset of a countable set is countable. (Contributed by Thierry Arnoux, 31-Jan-2017.)
((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)
 
Theoremdifsnen 7927 All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015.)
((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
 
Theoremdomdifsn 7928 Dominance over a set with one element removed. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.)
(𝐴𝐵𝐴 ≼ (𝐵 ∖ {𝐶}))
 
Theoremxpsnen 7929 A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴 × {𝐵}) ≈ 𝐴
 
Theoremxpsneng 7930 A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.)
((𝐴𝑉𝐵𝑊) → (𝐴 × {𝐵}) ≈ 𝐴)
 
Theoremxp1en 7931 One times a cardinal number. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
(𝐴𝑉 → (𝐴 × 1𝑜) ≈ 𝐴)
 
Theoremendisj 7932* Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.)
𝐴 ∈ V    &   𝐵 ∈ V       𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅)
 
Theoremundom 7933 Dominance law for union. Proposition 4.24(a) of [Mendelson] p. 257. (Contributed by NM, 3-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
(((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))
 
Theoremxpcomf1o 7934* The canonical bijection from (𝐴 × 𝐵) to (𝐵 × 𝐴). (Contributed by Mario Carneiro, 23-Apr-2014.)
𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})       𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)
 
Theoremxpcomco 7935* Composition with the bijection of xpcomf1o 7934 swaps the arguments to a mapping. (Contributed by Mario Carneiro, 30-May-2015.)
𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})    &   𝐺 = (𝑦𝐵, 𝑧𝐴𝐶)       (𝐺𝐹) = (𝑧𝐴, 𝑦𝐵𝐶)
 
Theoremxpcomen 7936 Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)
 
Theoremxpcomeng 7937 Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.)
((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
 
Theoremxpsnen2g 7938 A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.)
((𝐴𝑉𝐵𝑊) → ({𝐴} × 𝐵) ≈ 𝐵)
 
Theoremxpassen 7939 Associative law for equinumerosity of Cartesian product. Proposition 4.22(e) of [Mendelson] p. 254. (Contributed by NM, 22-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       ((𝐴 × 𝐵) × 𝐶) ≈ (𝐴 × (𝐵 × 𝐶))
 
Theoremxpdom2 7940 Dominance law for Cartesian product. Proposition 10.33(2) of [TakeutiZaring] p. 92. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
𝐶 ∈ V       (𝐴𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))
 
Theoremxpdom2g 7941 Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.)
((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))
 
Theoremxpdom1g 7942 Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐶𝑉𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
 
Theoremxpdom3 7943 A set is dominated by its Cartesian product with a nonempty set. Exercise 6 of [Suppes] p. 98. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝑉𝐵𝑊𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))
 
Theoremxpdom1 7944 Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by NM, 29-Mar-2006.) (Revised by Mario Carneiro, 7-May-2015.)
𝐶 ∈ V       (𝐴𝐵 → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
 
Theoremdomunsncan 7945 A singleton cancellation law for dominance. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       ((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) → (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) ↔ 𝑋𝑌))
 
Theoremomxpenlem 7946* Lemma for omxpen 7947. (Contributed by Mario Carneiro, 3-Mar-2013.) (Revised by Mario Carneiro, 25-May-2015.)
𝐹 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))       ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·𝑜 𝐵))
 
Theoremomxpen 7947 The cardinal and ordinal products are always equinumerous. Exercise 10 of [TakeutiZaring] p. 89. (Contributed by Mario Carneiro, 3-Mar-2013.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) ≈ (𝐴 × 𝐵))
 
Theoremomf1o 7948* Construct an explicit bijection from 𝐴 ·𝑜 𝐵 to 𝐵 ·𝑜 𝐴. (Contributed by Mario Carneiro, 30-May-2015.)
𝐹 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))    &   𝐺 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐵 ·𝑜 𝑦) +𝑜 𝑥))       ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺𝐹):(𝐴 ·𝑜 𝐵)–1-1-onto→(𝐵 ·𝑜 𝐴))
 
Theorempw2f1olem 7949* Lemma for pw2f1o 7950. (Contributed by Mario Carneiro, 6-Oct-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑊)    &   (𝜑𝐵𝐶)       (𝜑 → ((𝑆 ∈ 𝒫 𝐴𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑆 = (𝐺 “ {𝐶}))))
 
Theorempw2f1o 7950* The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑊)    &   (𝜑𝐵𝐶)    &   𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))       (𝜑𝐹:𝒫 𝐴1-1-onto→({𝐵, 𝐶} ↑𝑚 𝐴))
 
Theorempw2eng 7951 The power set of a set is equinumerous to set exponentiation with a base of ordinal 2𝑜. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 1-Jul-2015.)
(𝐴𝑉 → 𝒫 𝐴 ≈ (2𝑜𝑚 𝐴))
 
Theorempw2en 7952 The power set of a set is equinumerous to set exponentiation with a base of ordinal 2. Proposition 10.44 of [TakeutiZaring] p. 96. This is Metamath 100 proof #52. (Contributed by NM, 29-Jan-2004.) (Proof shortened by Mario Carneiro, 1-Jul-2015.)
𝐴 ∈ V       𝒫 𝐴 ≈ (2𝑜𝑚 𝐴)
 
Theoremfopwdom 7953 Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) (Revised by AV, 18-Sep-2021.)
((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)
 
Theoremenfixsn 7954* Given two equipollent sets, a bijection can always be chosen which fixes a single point. (Contributed by Stefan O'Rear, 9-Jul-2015.)
((𝐴𝑋𝐵𝑌𝑋𝑌) → ∃𝑓(𝑓:𝑋1-1-onto𝑌 ∧ (𝑓𝐴) = 𝐵))
 
2.4.24  Schroeder-Bernstein Theorem
 
Theoremsbthlem1 7955* Lemma for sbth 7965. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}        𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
 
Theoremsbthlem2 7956* Lemma for sbth 7965. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}       (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
 
Theoremsbthlem3 7957* Lemma for sbth 7965. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}       (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
 
Theoremsbthlem4 7958* Lemma for sbth 7965. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}       (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
 
Theoremsbthlem5 7959* Lemma for sbth 7965. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       ((dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴) → dom 𝐻 = 𝐴)
 
Theoremsbthlem6 7960* Lemma for sbth 7965. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       ((ran 𝑓𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
 
Theoremsbthlem7 7961* Lemma for sbth 7965. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
 
Theoremsbthlem8 7962* Lemma for sbth 7965. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       ((Fun 𝑓 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
 
Theoremsbthlem9 7963* Lemma for sbth 7965. (Contributed by NM, 28-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
 
Theoremsbthlem10 7964* Lemma for sbth 7965. (Contributed by NM, 28-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))    &   𝐵 ∈ V       ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)
 
Theoremsbth 7965 Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 𝐴 is smaller (has lower cardinality) than 𝐵 and vice-versa, then 𝐴 and 𝐵 are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 7955 through sbthlem10 7964; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 7964. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. This is Metamath 100 proof #25. (Contributed by NM, 8-Jun-1998.)
((𝐴𝐵𝐵𝐴) → 𝐴𝐵)
 
Theoremsbthb 7966 Schroeder-Bernstein Theorem and its converse. (Contributed by NM, 8-Jun-1998.)
((𝐴𝐵𝐵𝐴) ↔ 𝐴𝐵)
 
Theoremsbthcl 7967 Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998.)
≈ = ( ≼ ∩ ≼ )
 
Theoremdfsdom2 7968 Alternate definition of strict dominance. Compare Definition 3 of [Suppes] p. 97. (Contributed by NM, 31-Mar-1998.)
≺ = ( ≼ ∖ ≼ )
 
Theorembrsdom2 7969 Alternate definition of strict dominance. Definition 3 of [Suppes] p. 97. (Contributed by NM, 27-Jul-2004.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
 
Theoremsdomnsym 7970 Strict dominance is asymmetric. Theorem 21(ii) of [Suppes] p. 97. (Contributed by NM, 8-Jun-1998.)
(𝐴𝐵 → ¬ 𝐵𝐴)
 
Theoremdomnsym 7971 Theorem 22(i) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.)
(𝐴𝐵 → ¬ 𝐵𝐴)
 
Theorem0domg 7972 Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴𝑉 → ∅ ≼ 𝐴)
 
Theoremdom0 7973 A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.)
(𝐴 ≼ ∅ ↔ 𝐴 = ∅)
 
Theorem0sdomg 7974 A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006.)
(𝐴𝑉 → (∅ ≺ 𝐴𝐴 ≠ ∅))
 
Theorem0dom 7975 Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V       ∅ ≼ 𝐴
 
Theorem0sdom 7976 A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 29-Jul-2004.)
𝐴 ∈ V       (∅ ≺ 𝐴𝐴 ≠ ∅)
 
Theoremsdom0 7977 The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003.)
¬ 𝐴 ≺ ∅
 
Theoremsdomdomtr 7978 Transitivity of strict dominance and dominance. Theorem 22(iii) of [Suppes] p. 97. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremsdomentr 7979 Transitivity of strict dominance and equinumerosity. Exercise 11 of [Suppes] p. 98. (Contributed by NM, 26-Oct-2003.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremdomsdomtr 7980 Transitivity of dominance and strict dominance. Theorem 22(ii) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremensdomtr 7981 Transitivity of equinumerosity and strict dominance. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremsdomirr 7982 Strict dominance is irreflexive. Theorem 21(i) of [Suppes] p. 97. (Contributed by NM, 4-Jun-1998.)
¬ 𝐴𝐴
 
Theoremsdomtr 7983 Strict dominance is transitive. Theorem 21(iii) of [Suppes] p. 97. (Contributed by NM, 9-Jun-1998.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremsdomn2lp 7984 Strict dominance has no 2-cycle loops. (Contributed by NM, 6-May-2008.)
¬ (𝐴𝐵𝐵𝐴)
 
Theoremenen1 7985 Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.)
(𝐴𝐵 → (𝐴𝐶𝐵𝐶))
 
Theoremenen2 7986 Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.)
(𝐴𝐵 → (𝐶𝐴𝐶𝐵))
 
Theoremdomen1 7987 Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.)
(𝐴𝐵 → (𝐴𝐶𝐵𝐶))
 
Theoremdomen2 7988 Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.)
(𝐴𝐵 → (𝐶𝐴𝐶𝐵))
 
Theoremsdomen1 7989 Equality-like theorem for equinumerosity and strict dominance. (Contributed by NM, 8-Nov-2003.)
(𝐴𝐵 → (𝐴𝐶𝐵𝐶))
 
Theoremsdomen2 7990 Equality-like theorem for equinumerosity and strict dominance. (Contributed by NM, 8-Nov-2003.)
(𝐴𝐵 → (𝐶𝐴𝐶𝐵))
 
Theoremdomtriord 7991 Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
 
Theoremsdomel 7992 Strict dominance implies ordinal membership. (Contributed by Mario Carneiro, 13-Jan-2013.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
 
Theoremsdomdif 7993 The difference of a set from a smaller set cannot be empty. (Contributed by Mario Carneiro, 5-Feb-2013.)
(𝐴𝐵 → (𝐵𝐴) ≠ ∅)
 
Theoremonsdominel 7994 An ordinal with more elements of some type is larger. (Contributed by Stefan O'Rear, 2-Nov-2014.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴𝐶) ≺ (𝐵𝐶)) → 𝐴𝐵)
 
Theoremdomunsn 7995 Dominance over a set with one element added. (Contributed by Mario Carneiro, 18-May-2015.)
(𝐴𝐵 → (𝐴 ∪ {𝐶}) ≼ 𝐵)
 
Theoremfodomr 7996* There exists a mapping from a set onto any (nonempty) set that it dominates. (Contributed by NM, 23-Mar-2006.)
((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
 
Theorempwdom 7997 Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015.)
(𝐴𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵)
 
Theoremcanth2 7998 Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of [Suppes] p. 97. For the function version, see canth 6508. This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994.)
𝐴 ∈ V       𝐴 ≺ 𝒫 𝐴
 
Theoremcanth2g 7999 Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of [Suppes] p. 97. (Contributed by NM, 7-Nov-2003.)
(𝐴𝑉𝐴 ≺ 𝒫 𝐴)
 
Theorem2pwuninel 8000 The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008.)
¬ 𝒫 𝒫 𝐴𝐴
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >