MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegdi Structured version   Visualization version   GIF version

Theorem xnegdi 11950
Description: Extended real version of xnegdi 11950. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegdi ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))

Proof of Theorem xnegdi
StepHypRef Expression
1 elxr 11826 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 11826 . . . 4 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 recn 9905 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 9905 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
5 negdi 10217 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
63, 4, 5syl2an 493 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
7 readdcl 9898 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
8 rexneg 11916 . . . . . . . 8 ((𝐴 + 𝐵) ∈ ℝ → -𝑒(𝐴 + 𝐵) = -(𝐴 + 𝐵))
97, 8syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝑒(𝐴 + 𝐵) = -(𝐴 + 𝐵))
10 renegcl 10223 . . . . . . . 8 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
11 renegcl 10223 . . . . . . . 8 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
12 rexadd 11937 . . . . . . . 8 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → (-𝐴 +𝑒 -𝐵) = (-𝐴 + -𝐵))
1310, 11, 12syl2an 493 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 +𝑒 -𝐵) = (-𝐴 + -𝐵))
146, 9, 133eqtr4d 2654 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝑒(𝐴 + 𝐵) = (-𝐴 +𝑒 -𝐵))
15 rexadd 11937 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
16 xnegeq 11912 . . . . . . 7 ((𝐴 +𝑒 𝐵) = (𝐴 + 𝐵) → -𝑒(𝐴 +𝑒 𝐵) = -𝑒(𝐴 + 𝐵))
1715, 16syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝑒(𝐴 +𝑒 𝐵) = -𝑒(𝐴 + 𝐵))
18 rexneg 11916 . . . . . . 7 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
19 rexneg 11916 . . . . . . 7 (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵)
2018, 19oveqan12d 6568 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝑒𝐴 +𝑒 -𝑒𝐵) = (-𝐴 +𝑒 -𝐵))
2114, 17, 203eqtr4d 2654 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
22 xnegpnf 11914 . . . . . 6 -𝑒+∞ = -∞
23 oveq2 6557 . . . . . . . 8 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
24 rexr 9964 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
25 renemnf 9967 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
26 xaddpnf1 11931 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
2724, 25, 26syl2anc 691 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 +𝑒 +∞) = +∞)
2823, 27sylan9eqr 2666 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
29 xnegeq 11912 . . . . . . 7 ((𝐴 +𝑒 𝐵) = +∞ → -𝑒(𝐴 +𝑒 𝐵) = -𝑒+∞)
3028, 29syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -𝑒(𝐴 +𝑒 𝐵) = -𝑒+∞)
31 xnegeq 11912 . . . . . . . . 9 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
3231, 22syl6eq 2660 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -∞)
3332oveq2d 6565 . . . . . . 7 (𝐵 = +∞ → (-𝑒𝐴 +𝑒 -𝑒𝐵) = (-𝑒𝐴 +𝑒 -∞))
3418, 10eqeltrd 2688 . . . . . . . 8 (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ)
35 rexr 9964 . . . . . . . . 9 (-𝑒𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ*)
36 renepnf 9966 . . . . . . . . 9 (-𝑒𝐴 ∈ ℝ → -𝑒𝐴 ≠ +∞)
37 xaddmnf1 11933 . . . . . . . . 9 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐴 ≠ +∞) → (-𝑒𝐴 +𝑒 -∞) = -∞)
3835, 36, 37syl2anc 691 . . . . . . . 8 (-𝑒𝐴 ∈ ℝ → (-𝑒𝐴 +𝑒 -∞) = -∞)
3934, 38syl 17 . . . . . . 7 (𝐴 ∈ ℝ → (-𝑒𝐴 +𝑒 -∞) = -∞)
4033, 39sylan9eqr 2666 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (-𝑒𝐴 +𝑒 -𝑒𝐵) = -∞)
4122, 30, 403eqtr4a 2670 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
42 xnegmnf 11915 . . . . . 6 -𝑒-∞ = +∞
43 oveq2 6557 . . . . . . . 8 (𝐵 = -∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 -∞))
44 renepnf 9966 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
45 xaddmnf1 11933 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
4624, 44, 45syl2anc 691 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 +𝑒 -∞) = -∞)
4743, 46sylan9eqr 2666 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
48 xnegeq 11912 . . . . . . 7 ((𝐴 +𝑒 𝐵) = -∞ → -𝑒(𝐴 +𝑒 𝐵) = -𝑒-∞)
4947, 48syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → -𝑒(𝐴 +𝑒 𝐵) = -𝑒-∞)
50 xnegeq 11912 . . . . . . . . 9 (𝐵 = -∞ → -𝑒𝐵 = -𝑒-∞)
5150, 42syl6eq 2660 . . . . . . . 8 (𝐵 = -∞ → -𝑒𝐵 = +∞)
5251oveq2d 6565 . . . . . . 7 (𝐵 = -∞ → (-𝑒𝐴 +𝑒 -𝑒𝐵) = (-𝑒𝐴 +𝑒 +∞))
53 renemnf 9967 . . . . . . . . 9 (-𝑒𝐴 ∈ ℝ → -𝑒𝐴 ≠ -∞)
54 xaddpnf1 11931 . . . . . . . . 9 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐴 ≠ -∞) → (-𝑒𝐴 +𝑒 +∞) = +∞)
5535, 53, 54syl2anc 691 . . . . . . . 8 (-𝑒𝐴 ∈ ℝ → (-𝑒𝐴 +𝑒 +∞) = +∞)
5634, 55syl 17 . . . . . . 7 (𝐴 ∈ ℝ → (-𝑒𝐴 +𝑒 +∞) = +∞)
5752, 56sylan9eqr 2666 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (-𝑒𝐴 +𝑒 -𝑒𝐵) = +∞)
5842, 49, 573eqtr4a 2670 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
5921, 41, 583jaodan 1386 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
602, 59sylan2b 491 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
61 xneg0 11917 . . . . . . 7 -𝑒0 = 0
62 simpr 476 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐵 = -∞) → 𝐵 = -∞)
6362oveq2d 6565 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐵 = -∞) → (+∞ +𝑒 𝐵) = (+∞ +𝑒 -∞))
64 pnfaddmnf 11935 . . . . . . . . 9 (+∞ +𝑒 -∞) = 0
6563, 64syl6eq 2660 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 = -∞) → (+∞ +𝑒 𝐵) = 0)
66 xnegeq 11912 . . . . . . . 8 ((+∞ +𝑒 𝐵) = 0 → -𝑒(+∞ +𝑒 𝐵) = -𝑒0)
6765, 66syl 17 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = -∞) → -𝑒(+∞ +𝑒 𝐵) = -𝑒0)
6851adantl 481 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐵 = -∞) → -𝑒𝐵 = +∞)
6968oveq2d 6565 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 = -∞) → (-∞ +𝑒 -𝑒𝐵) = (-∞ +𝑒 +∞))
70 mnfaddpnf 11936 . . . . . . . 8 (-∞ +𝑒 +∞) = 0
7169, 70syl6eq 2660 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = -∞) → (-∞ +𝑒 -𝑒𝐵) = 0)
7261, 67, 713eqtr4a 2670 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 = -∞) → -𝑒(+∞ +𝑒 𝐵) = (-∞ +𝑒 -𝑒𝐵))
73 xaddpnf2 11932 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
74 xnegeq 11912 . . . . . . . 8 ((+∞ +𝑒 𝐵) = +∞ → -𝑒(+∞ +𝑒 𝐵) = -𝑒+∞)
7573, 74syl 17 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → -𝑒(+∞ +𝑒 𝐵) = -𝑒+∞)
76 xnegcl 11918 . . . . . . . . 9 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
7776adantr 480 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → -𝑒𝐵 ∈ ℝ*)
78 xnegeq 11912 . . . . . . . . . . . 12 (-𝑒𝐵 = +∞ → -𝑒-𝑒𝐵 = -𝑒+∞)
7978, 22syl6eq 2660 . . . . . . . . . . 11 (-𝑒𝐵 = +∞ → -𝑒-𝑒𝐵 = -∞)
80 xnegneg 11919 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
8180eqeq1d 2612 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (-𝑒-𝑒𝐵 = -∞ ↔ 𝐵 = -∞))
8279, 81syl5ib 233 . . . . . . . . . 10 (𝐵 ∈ ℝ* → (-𝑒𝐵 = +∞ → 𝐵 = -∞))
8382necon3d 2803 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝐵 ≠ -∞ → -𝑒𝐵 ≠ +∞))
8483imp 444 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → -𝑒𝐵 ≠ +∞)
85 xaddmnf2 11934 . . . . . . . 8 ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐵 ≠ +∞) → (-∞ +𝑒 -𝑒𝐵) = -∞)
8677, 84, 85syl2anc 691 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (-∞ +𝑒 -𝑒𝐵) = -∞)
8722, 75, 863eqtr4a 2670 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → -𝑒(+∞ +𝑒 𝐵) = (-∞ +𝑒 -𝑒𝐵))
8872, 87pm2.61dane 2869 . . . . 5 (𝐵 ∈ ℝ* → -𝑒(+∞ +𝑒 𝐵) = (-∞ +𝑒 -𝑒𝐵))
8988adantl 481 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → -𝑒(+∞ +𝑒 𝐵) = (-∞ +𝑒 -𝑒𝐵))
90 simpl 472 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = +∞)
9190oveq1d 6564 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
92 xnegeq 11912 . . . . 5 ((𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵) → -𝑒(𝐴 +𝑒 𝐵) = -𝑒(+∞ +𝑒 𝐵))
9391, 92syl 17 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = -𝑒(+∞ +𝑒 𝐵))
94 xnegeq 11912 . . . . . . 7 (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞)
9594adantr 480 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → -𝑒𝐴 = -𝑒+∞)
9695, 22syl6eq 2660 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → -𝑒𝐴 = -∞)
9796oveq1d 6564 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 -𝑒𝐵) = (-∞ +𝑒 -𝑒𝐵))
9889, 93, 973eqtr4d 2654 . . 3 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
99 simpr 476 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐵 = +∞) → 𝐵 = +∞)
10099oveq2d 6565 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐵 = +∞) → (-∞ +𝑒 𝐵) = (-∞ +𝑒 +∞))
101100, 70syl6eq 2660 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 = +∞) → (-∞ +𝑒 𝐵) = 0)
102 xnegeq 11912 . . . . . . . 8 ((-∞ +𝑒 𝐵) = 0 → -𝑒(-∞ +𝑒 𝐵) = -𝑒0)
103101, 102syl 17 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = +∞) → -𝑒(-∞ +𝑒 𝐵) = -𝑒0)
10432adantl 481 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐵 = +∞) → -𝑒𝐵 = -∞)
105104oveq2d 6565 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 = +∞) → (+∞ +𝑒 -𝑒𝐵) = (+∞ +𝑒 -∞))
106105, 64syl6eq 2660 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = +∞) → (+∞ +𝑒 -𝑒𝐵) = 0)
10761, 103, 1063eqtr4a 2670 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 = +∞) → -𝑒(-∞ +𝑒 𝐵) = (+∞ +𝑒 -𝑒𝐵))
108 xaddmnf2 11934 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
109 xnegeq 11912 . . . . . . . 8 ((-∞ +𝑒 𝐵) = -∞ → -𝑒(-∞ +𝑒 𝐵) = -𝑒-∞)
110108, 109syl 17 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → -𝑒(-∞ +𝑒 𝐵) = -𝑒-∞)
11176adantr 480 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → -𝑒𝐵 ∈ ℝ*)
112 xnegeq 11912 . . . . . . . . . . . 12 (-𝑒𝐵 = -∞ → -𝑒-𝑒𝐵 = -𝑒-∞)
113112, 42syl6eq 2660 . . . . . . . . . . 11 (-𝑒𝐵 = -∞ → -𝑒-𝑒𝐵 = +∞)
11480eqeq1d 2612 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (-𝑒-𝑒𝐵 = +∞ ↔ 𝐵 = +∞))
115113, 114syl5ib 233 . . . . . . . . . 10 (𝐵 ∈ ℝ* → (-𝑒𝐵 = -∞ → 𝐵 = +∞))
116115necon3d 2803 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝐵 ≠ +∞ → -𝑒𝐵 ≠ -∞))
117116imp 444 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → -𝑒𝐵 ≠ -∞)
118 xaddpnf2 11932 . . . . . . . 8 ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐵 ≠ -∞) → (+∞ +𝑒 -𝑒𝐵) = +∞)
119111, 117, 118syl2anc 691 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (+∞ +𝑒 -𝑒𝐵) = +∞)
12042, 110, 1193eqtr4a 2670 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → -𝑒(-∞ +𝑒 𝐵) = (+∞ +𝑒 -𝑒𝐵))
121107, 120pm2.61dane 2869 . . . . 5 (𝐵 ∈ ℝ* → -𝑒(-∞ +𝑒 𝐵) = (+∞ +𝑒 -𝑒𝐵))
122121adantl 481 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → -𝑒(-∞ +𝑒 𝐵) = (+∞ +𝑒 -𝑒𝐵))
123 simpl 472 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = -∞)
124123oveq1d 6564 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
125 xnegeq 11912 . . . . 5 ((𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵) → -𝑒(𝐴 +𝑒 𝐵) = -𝑒(-∞ +𝑒 𝐵))
126124, 125syl 17 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = -𝑒(-∞ +𝑒 𝐵))
127 xnegeq 11912 . . . . . . 7 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
128127adantr 480 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → -𝑒𝐴 = -𝑒-∞)
129128, 42syl6eq 2660 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → -𝑒𝐴 = +∞)
130129oveq1d 6564 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 -𝑒𝐵) = (+∞ +𝑒 -𝑒𝐵))
131122, 126, 1303eqtr4d 2654 . . 3 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
13260, 98, 1313jaoian 1385 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
1331, 132sylanb 488 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3o 1030   = wceq 1475  wcel 1977  wne 2780  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   + caddc 9818  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952  -cneg 10146  -𝑒cxne 11819   +𝑒 cxad 11820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-sub 10147  df-neg 10148  df-xneg 11822  df-xadd 11823
This theorem is referenced by:  xaddass2  11952  xposdif  11964  xadddi  11997  xrsxmet  22420
  Copyright terms: Public domain W3C validator