MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tchcphlem1 Structured version   Visualization version   GIF version

Theorem tchcphlem1 22842
Description: Lemma for tchcph 22844: the triangle inequality. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tchval.n 𝐺 = (toℂHil‘𝑊)
tchcph.v 𝑉 = (Base‘𝑊)
tchcph.f 𝐹 = (Scalar‘𝑊)
tchcph.1 (𝜑𝑊 ∈ PreHil)
tchcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tchcph.h , = (·𝑖𝑊)
tchcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tchcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tchcph.k 𝐾 = (Base‘𝐹)
tchcph.m = (-g𝑊)
tchcphlem1.3 (𝜑𝑋𝑉)
tchcphlem1.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
tchcphlem1 (𝜑 → (√‘((𝑋 𝑌) , (𝑋 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))))
Distinct variable groups:   𝑥,   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tchcphlem1
StepHypRef Expression
1 tchcph.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
2 phllmod 19794 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
3 lmodgrp 18693 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
41, 2, 33syl 18 . . . . . 6 (𝜑𝑊 ∈ Grp)
5 tchcphlem1.3 . . . . . 6 (𝜑𝑋𝑉)
6 tchcphlem1.4 . . . . . 6 (𝜑𝑌𝑉)
7 tchcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
8 tchcph.m . . . . . . 7 = (-g𝑊)
97, 8grpsubcl 17318 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
104, 5, 6, 9syl3anc 1318 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
11 tchval.n . . . . . 6 𝐺 = (toℂHil‘𝑊)
12 tchcph.f . . . . . 6 𝐹 = (Scalar‘𝑊)
13 tchcph.2 . . . . . 6 (𝜑𝐹 = (ℂflds 𝐾))
14 tchcph.h . . . . . 6 , = (·𝑖𝑊)
1511, 7, 12, 1, 13, 14tchcphlem3 22840 . . . . 5 ((𝜑 ∧ (𝑋 𝑌) ∈ 𝑉) → ((𝑋 𝑌) , (𝑋 𝑌)) ∈ ℝ)
1610, 15mpdan 699 . . . 4 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ∈ ℝ)
1711, 7, 12, 1, 13, 14tchcphlem3 22840 . . . . . . 7 ((𝜑𝑋𝑉) → (𝑋 , 𝑋) ∈ ℝ)
185, 17mpdan 699 . . . . . 6 (𝜑 → (𝑋 , 𝑋) ∈ ℝ)
1911, 7, 12, 1, 13, 14tchcphlem3 22840 . . . . . . 7 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
206, 19mpdan 699 . . . . . 6 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
2118, 20readdcld 9948 . . . . 5 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ ℝ)
2211, 7, 12, 1, 13tchclm 22839 . . . . . . . . 9 (𝜑𝑊 ∈ ℂMod)
23 tchcph.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
2412, 23clmsscn 22687 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
2522, 24syl 17 . . . . . . . 8 (𝜑𝐾 ⊆ ℂ)
2612, 14, 7, 23ipcl 19797 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑋 , 𝑌) ∈ 𝐾)
271, 5, 6, 26syl3anc 1318 . . . . . . . 8 (𝜑 → (𝑋 , 𝑌) ∈ 𝐾)
2825, 27sseldd 3569 . . . . . . 7 (𝜑 → (𝑋 , 𝑌) ∈ ℂ)
2912, 14, 7, 23ipcl 19797 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑋𝑉) → (𝑌 , 𝑋) ∈ 𝐾)
301, 6, 5, 29syl3anc 1318 . . . . . . . 8 (𝜑 → (𝑌 , 𝑋) ∈ 𝐾)
3125, 30sseldd 3569 . . . . . . 7 (𝜑 → (𝑌 , 𝑋) ∈ ℂ)
3228, 31addcld 9938 . . . . . 6 (𝜑 → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ ℂ)
3332abscld 14023 . . . . 5 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ∈ ℝ)
3421, 33readdcld 9948 . . . 4 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ∈ ℝ)
3518recnd 9947 . . . . . 6 (𝜑 → (𝑋 , 𝑋) ∈ ℂ)
36 2re 10967 . . . . . . . 8 2 ∈ ℝ
37 tchcph.4 . . . . . . . . . . . 12 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
3837ralrimiva 2949 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
39 oveq12 6558 . . . . . . . . . . . . . 14 ((𝑥 = 𝑋𝑥 = 𝑋) → (𝑥 , 𝑥) = (𝑋 , 𝑋))
4039anidms 675 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝑥 , 𝑥) = (𝑋 , 𝑋))
4140breq2d 4595 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑋 , 𝑋)))
4241rspcv 3278 . . . . . . . . . . 11 (𝑋𝑉 → (∀𝑥𝑉 0 ≤ (𝑥 , 𝑥) → 0 ≤ (𝑋 , 𝑋)))
435, 38, 42sylc 63 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑋 , 𝑋))
4418, 43resqrtcld 14004 . . . . . . . . 9 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℝ)
45 oveq12 6558 . . . . . . . . . . . . . 14 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
4645anidms 675 . . . . . . . . . . . . 13 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
4746breq2d 4595 . . . . . . . . . . . 12 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
4847rspcv 3278 . . . . . . . . . . 11 (𝑌𝑉 → (∀𝑥𝑉 0 ≤ (𝑥 , 𝑥) → 0 ≤ (𝑌 , 𝑌)))
496, 38, 48sylc 63 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑌 , 𝑌))
5020, 49resqrtcld 14004 . . . . . . . . 9 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℝ)
5144, 50remulcld 9949 . . . . . . . 8 (𝜑 → ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ)
52 remulcl 9900 . . . . . . . 8 ((2 ∈ ℝ ∧ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ) → (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) ∈ ℝ)
5336, 51, 52sylancr 694 . . . . . . 7 (𝜑 → (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) ∈ ℝ)
5453recnd 9947 . . . . . 6 (𝜑 → (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) ∈ ℂ)
5520recnd 9947 . . . . . 6 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
5635, 54, 55add32d 10142 . . . . 5 (𝜑 → (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)) = (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
5721, 53readdcld 9948 . . . . 5 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) ∈ ℝ)
5856, 57eqeltrd 2688 . . . 4 (𝜑 → (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)) ∈ ℝ)
59 oveq12 6558 . . . . . . . . . . . 12 ((𝑥 = (𝑋 𝑌) ∧ 𝑥 = (𝑋 𝑌)) → (𝑥 , 𝑥) = ((𝑋 𝑌) , (𝑋 𝑌)))
6059anidms 675 . . . . . . . . . . 11 (𝑥 = (𝑋 𝑌) → (𝑥 , 𝑥) = ((𝑋 𝑌) , (𝑋 𝑌)))
6160breq2d 4595 . . . . . . . . . 10 (𝑥 = (𝑋 𝑌) → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ ((𝑋 𝑌) , (𝑋 𝑌))))
6261rspcv 3278 . . . . . . . . 9 ((𝑋 𝑌) ∈ 𝑉 → (∀𝑥𝑉 0 ≤ (𝑥 , 𝑥) → 0 ≤ ((𝑋 𝑌) , (𝑋 𝑌))))
6310, 38, 62sylc 63 . . . . . . . 8 (𝜑 → 0 ≤ ((𝑋 𝑌) , (𝑋 𝑌)))
6416, 63absidd 14009 . . . . . . 7 (𝜑 → (abs‘((𝑋 𝑌) , (𝑋 𝑌))) = ((𝑋 𝑌) , (𝑋 𝑌)))
6512clmadd 22682 . . . . . . . . . . . 12 (𝑊 ∈ ℂMod → + = (+g𝐹))
6622, 65syl 17 . . . . . . . . . . 11 (𝜑 → + = (+g𝐹))
6766oveqd 6566 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) = ((𝑋 , 𝑋)(+g𝐹)(𝑌 , 𝑌)))
6866oveqd 6566 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) = ((𝑋 , 𝑌)(+g𝐹)(𝑌 , 𝑋)))
6967, 68oveq12d 6567 . . . . . . . . 9 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌) + (𝑌 , 𝑋))) = (((𝑋 , 𝑋)(+g𝐹)(𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌)(+g𝐹)(𝑌 , 𝑋))))
7012, 14, 7, 23ipcl 19797 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑋𝑉) → (𝑋 , 𝑋) ∈ 𝐾)
711, 5, 5, 70syl3anc 1318 . . . . . . . . . . 11 (𝜑 → (𝑋 , 𝑋) ∈ 𝐾)
7212, 14, 7, 23ipcl 19797 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑌𝑉) → (𝑌 , 𝑌) ∈ 𝐾)
731, 6, 6, 72syl3anc 1318 . . . . . . . . . . 11 (𝜑 → (𝑌 , 𝑌) ∈ 𝐾)
7412, 23clmacl 22692 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑋) ∈ 𝐾 ∧ (𝑌 , 𝑌) ∈ 𝐾) → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ 𝐾)
7522, 71, 73, 74syl3anc 1318 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ 𝐾)
7612, 23clmacl 22692 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾 ∧ (𝑌 , 𝑋) ∈ 𝐾) → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ 𝐾)
7722, 27, 30, 76syl3anc 1318 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ 𝐾)
7812, 23clmsub 22688 . . . . . . . . . 10 ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ 𝐾 ∧ ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ 𝐾) → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋))) = (((𝑋 , 𝑋) + (𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌) + (𝑌 , 𝑋))))
7922, 75, 77, 78syl3anc 1318 . . . . . . . . 9 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋))) = (((𝑋 , 𝑋) + (𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌) + (𝑌 , 𝑋))))
80 eqid 2610 . . . . . . . . . 10 (-g𝐹) = (-g𝐹)
81 eqid 2610 . . . . . . . . . 10 (+g𝐹) = (+g𝐹)
8212, 14, 7, 8, 80, 81, 1, 5, 6, 5, 6ip2subdi 19808 . . . . . . . . 9 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) = (((𝑋 , 𝑋)(+g𝐹)(𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌)(+g𝐹)(𝑌 , 𝑋))))
8369, 79, 823eqtr4rd 2655 . . . . . . . 8 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) = (((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋))))
8483fveq2d 6107 . . . . . . 7 (𝜑 → (abs‘((𝑋 𝑌) , (𝑋 𝑌))) = (abs‘(((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8564, 84eqtr3d 2646 . . . . . 6 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) = (abs‘(((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8625, 75sseldd 3569 . . . . . . 7 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ ℂ)
8786, 32abs2dif2d 14045 . . . . . 6 (𝜑 → (abs‘(((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ≤ ((abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8885, 87eqbrtrd 4605 . . . . 5 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ≤ ((abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8918, 20, 43, 49addge0d 10482 . . . . . . 7 (𝜑 → 0 ≤ ((𝑋 , 𝑋) + (𝑌 , 𝑌)))
9021, 89absidd 14009 . . . . . 6 (𝜑 → (abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) = ((𝑋 , 𝑋) + (𝑌 , 𝑌)))
9190oveq1d 6564 . . . . 5 (𝜑 → ((abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
9288, 91breqtrd 4609 . . . 4 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ≤ (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
9328abscld 14023 . . . . . . . 8 (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℝ)
94 remulcl 9900 . . . . . . . 8 ((2 ∈ ℝ ∧ (abs‘(𝑋 , 𝑌)) ∈ ℝ) → (2 · (abs‘(𝑋 , 𝑌))) ∈ ℝ)
9536, 93, 94sylancr 694 . . . . . . 7 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) ∈ ℝ)
9628, 31abstrid 14043 . . . . . . . 8 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ≤ ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑌 , 𝑋))))
9793recnd 9947 . . . . . . . . . 10 (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℂ)
98972timesd 11152 . . . . . . . . 9 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) = ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑋 , 𝑌))))
9928abscjd 14037 . . . . . . . . . . 11 (𝜑 → (abs‘(∗‘(𝑋 , 𝑌))) = (abs‘(𝑋 , 𝑌)))
10012clmcj 22684 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂMod → ∗ = (*𝑟𝐹))
10122, 100syl 17 . . . . . . . . . . . . . 14 (𝜑 → ∗ = (*𝑟𝐹))
102101fveq1d 6105 . . . . . . . . . . . . 13 (𝜑 → (∗‘(𝑋 , 𝑌)) = ((*𝑟𝐹)‘(𝑋 , 𝑌)))
103 eqid 2610 . . . . . . . . . . . . . . 15 (*𝑟𝐹) = (*𝑟𝐹)
10412, 14, 7, 103ipcj 19798 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
1051, 5, 6, 104syl3anc 1318 . . . . . . . . . . . . 13 (𝜑 → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
106102, 105eqtrd 2644 . . . . . . . . . . . 12 (𝜑 → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
107106fveq2d 6107 . . . . . . . . . . 11 (𝜑 → (abs‘(∗‘(𝑋 , 𝑌))) = (abs‘(𝑌 , 𝑋)))
10899, 107eqtr3d 2646 . . . . . . . . . 10 (𝜑 → (abs‘(𝑋 , 𝑌)) = (abs‘(𝑌 , 𝑋)))
109108oveq2d 6565 . . . . . . . . 9 (𝜑 → ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑋 , 𝑌))) = ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑌 , 𝑋))))
11098, 109eqtrd 2644 . . . . . . . 8 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) = ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑌 , 𝑋))))
11196, 110breqtrrd 4611 . . . . . . 7 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ≤ (2 · (abs‘(𝑋 , 𝑌))))
112 tchcph.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
113 eqid 2610 . . . . . . . . . 10 (norm‘𝐺) = (norm‘𝐺)
114 eqid 2610 . . . . . . . . . 10 ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
11511, 7, 12, 1, 13, 14, 112, 37, 23, 113, 114, 5, 6ipcau2 22841 . . . . . . . . 9 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ (((norm‘𝐺)‘𝑋) · ((norm‘𝐺)‘𝑌)))
11611, 113, 7, 14tchnmval 22836 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → ((norm‘𝐺)‘𝑋) = (√‘(𝑋 , 𝑋)))
1174, 5, 116syl2anc 691 . . . . . . . . . 10 (𝜑 → ((norm‘𝐺)‘𝑋) = (√‘(𝑋 , 𝑋)))
11811, 113, 7, 14tchnmval 22836 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑌𝑉) → ((norm‘𝐺)‘𝑌) = (√‘(𝑌 , 𝑌)))
1194, 6, 118syl2anc 691 . . . . . . . . . 10 (𝜑 → ((norm‘𝐺)‘𝑌) = (√‘(𝑌 , 𝑌)))
120117, 119oveq12d 6567 . . . . . . . . 9 (𝜑 → (((norm‘𝐺)‘𝑋) · ((norm‘𝐺)‘𝑌)) = ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
121115, 120breqtrd 4609 . . . . . . . 8 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
12236a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
123 2pos 10989 . . . . . . . . . 10 0 < 2
124123a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
125 lemul2 10755 . . . . . . . . 9 (((abs‘(𝑋 , 𝑌)) ∈ ℝ ∧ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ (2 · (abs‘(𝑋 , 𝑌))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
12693, 51, 122, 124, 125syl112anc 1322 . . . . . . . 8 (𝜑 → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ (2 · (abs‘(𝑋 , 𝑌))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
127121, 126mpbid 221 . . . . . . 7 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))))
12833, 95, 53, 111, 127letrd 10073 . . . . . 6 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))))
12933, 53, 21, 128leadd2dd 10521 . . . . 5 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ≤ (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
130129, 56breqtrrd 4611 . . . 4 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ≤ (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
13116, 34, 58, 92, 130letrd 10073 . . 3 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ≤ (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
13216recnd 9947 . . . 4 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ∈ ℂ)
133132sqsqrtd 14026 . . 3 (𝜑 → ((√‘((𝑋 𝑌) , (𝑋 𝑌)))↑2) = ((𝑋 𝑌) , (𝑋 𝑌)))
13435sqrtcld 14024 . . . . 5 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℂ)
13550recnd 9947 . . . . 5 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℂ)
136 binom2 12841 . . . . 5 (((√‘(𝑋 , 𝑋)) ∈ ℂ ∧ (√‘(𝑌 , 𝑌)) ∈ ℂ) → (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2) = ((((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + ((√‘(𝑌 , 𝑌))↑2)))
137134, 135, 136syl2anc 691 . . . 4 (𝜑 → (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2) = ((((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + ((√‘(𝑌 , 𝑌))↑2)))
13835sqsqrtd 14026 . . . . . 6 (𝜑 → ((√‘(𝑋 , 𝑋))↑2) = (𝑋 , 𝑋))
139138oveq1d 6564 . . . . 5 (𝜑 → (((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) = ((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
14055sqsqrtd 14026 . . . . 5 (𝜑 → ((√‘(𝑌 , 𝑌))↑2) = (𝑌 , 𝑌))
141139, 140oveq12d 6567 . . . 4 (𝜑 → ((((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + ((√‘(𝑌 , 𝑌))↑2)) = (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
142137, 141eqtrd 2644 . . 3 (𝜑 → (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2) = (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
143131, 133, 1423brtr4d 4615 . 2 (𝜑 → ((√‘((𝑋 𝑌) , (𝑋 𝑌)))↑2) ≤ (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2))
14416, 63resqrtcld 14004 . . 3 (𝜑 → (√‘((𝑋 𝑌) , (𝑋 𝑌))) ∈ ℝ)
14544, 50readdcld 9948 . . 3 (𝜑 → ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))) ∈ ℝ)
14616, 63sqrtge0d 14007 . . 3 (𝜑 → 0 ≤ (√‘((𝑋 𝑌) , (𝑋 𝑌))))
14718, 43sqrtge0d 14007 . . . 4 (𝜑 → 0 ≤ (√‘(𝑋 , 𝑋)))
14820, 49sqrtge0d 14007 . . . 4 (𝜑 → 0 ≤ (√‘(𝑌 , 𝑌)))
14944, 50, 147, 148addge0d 10482 . . 3 (𝜑 → 0 ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))))
150144, 145, 146, 149le2sqd 12906 . 2 (𝜑 → ((√‘((𝑋 𝑌) , (𝑋 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))) ↔ ((√‘((𝑋 𝑌) , (𝑋 𝑌)))↑2) ≤ (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2)))
151143, 150mpbird 246 1 (𝜑 → (√‘((𝑋 𝑌) , (𝑋 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  cexp 12722  ccj 13684  csqrt 13821  abscabs 13822  Basecbs 15695  s cress 15696  +gcplusg 15768  *𝑟cstv 15770  Scalarcsca 15771  ·𝑖cip 15773  Grpcgrp 17245  -gcsg 17247  LModclmod 18686  fldccnfld 19567  PreHilcphl 19788  normcnm 22191  ℂModcclm 22670  toℂHilctch 22775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-ghm 17481  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-subrg 18601  df-staf 18668  df-srng 18669  df-lmod 18688  df-lmhm 18843  df-lvec 18924  df-sra 18993  df-rgmod 18994  df-cnfld 19568  df-phl 19790  df-nm 22197  df-tng 22199  df-clm 22671  df-tch 22777
This theorem is referenced by:  tchcph  22844
  Copyright terms: Public domain W3C validator