MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadasslem Structured version   Visualization version   GIF version

Theorem sadasslem 15030
Description: Lemma for sadass 15031. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadasslem.1 (𝜑𝐴 ⊆ ℕ0)
sadasslem.2 (𝜑𝐵 ⊆ ℕ0)
sadasslem.3 (𝜑𝐶 ⊆ ℕ0)
sadasslem.4 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadasslem (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))

Proof of Theorem sadasslem
Dummy variables 𝑐 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3795 . . . . . . . . . . 11 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
2 sadasslem.1 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℕ0)
31, 2syl5ss 3579 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
4 fzofi 12635 . . . . . . . . . . . 12 (0..^𝑁) ∈ Fin
54a1i 11 . . . . . . . . . . 11 (𝜑 → (0..^𝑁) ∈ Fin)
6 inss2 3796 . . . . . . . . . . 11 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
7 ssfi 8065 . . . . . . . . . . 11 (((0..^𝑁) ∈ Fin ∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
85, 6, 7sylancl 693 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
9 elfpw 8151 . . . . . . . . . 10 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin))
103, 8, 9sylanbrc 695 . . . . . . . . 9 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
11 bitsf1o 15005 . . . . . . . . . . 11 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
12 f1ocnv 6062 . . . . . . . . . . 11 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
13 f1of 6050 . . . . . . . . . . 11 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
1411, 12, 13mp2b 10 . . . . . . . . . 10 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
1514ffvelrni 6266 . . . . . . . . 9 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
1610, 15syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
1716nn0cnd 11230 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℂ)
18 inss1 3795 . . . . . . . . . . 11 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
19 sadasslem.2 . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℕ0)
2018, 19syl5ss 3579 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
21 inss2 3796 . . . . . . . . . . 11 (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
22 ssfi 8065 . . . . . . . . . . 11 (((0..^𝑁) ∈ Fin ∧ (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
235, 21, 22sylancl 693 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
24 elfpw 8151 . . . . . . . . . 10 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐵 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ∈ Fin))
2520, 23, 24sylanbrc 695 . . . . . . . . 9 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
2614ffvelrni 6266 . . . . . . . . 9 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
2725, 26syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
2827nn0cnd 11230 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℂ)
29 inss1 3795 . . . . . . . . . . 11 (𝐶 ∩ (0..^𝑁)) ⊆ 𝐶
30 sadasslem.3 . . . . . . . . . . 11 (𝜑𝐶 ⊆ ℕ0)
3129, 30syl5ss 3579 . . . . . . . . . 10 (𝜑 → (𝐶 ∩ (0..^𝑁)) ⊆ ℕ0)
32 inss2 3796 . . . . . . . . . . 11 (𝐶 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
33 ssfi 8065 . . . . . . . . . . 11 (((0..^𝑁) ∈ Fin ∧ (𝐶 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐶 ∩ (0..^𝑁)) ∈ Fin)
345, 32, 33sylancl 693 . . . . . . . . . 10 (𝜑 → (𝐶 ∩ (0..^𝑁)) ∈ Fin)
35 elfpw 8151 . . . . . . . . . 10 ((𝐶 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐶 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐶 ∩ (0..^𝑁)) ∈ Fin))
3631, 34, 35sylanbrc 695 . . . . . . . . 9 (𝜑 → (𝐶 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
3714ffvelrni 6266 . . . . . . . . 9 ((𝐶 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℕ0)
3836, 37syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℕ0)
3938nn0cnd 11230 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℂ)
4017, 28, 39addassd 9941 . . . . . 6 (𝜑 → ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) = (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))))))
4140oveq1d 6564 . . . . 5 (𝜑 → (((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))))) mod (2↑𝑁)))
42 inss1 3795 . . . . . . . . . 10 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵)
43 sadcl 15022 . . . . . . . . . . 11 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0)
442, 19, 43syl2anc 691 . . . . . . . . . 10 (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0)
4542, 44syl5ss 3579 . . . . . . . . 9 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0)
46 inss2 3796 . . . . . . . . . 10 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
47 ssfi 8065 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
485, 46, 47sylancl 693 . . . . . . . . 9 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
49 elfpw 8151 . . . . . . . . 9 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin))
5045, 48, 49sylanbrc 695 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
5114ffvelrni 6266 . . . . . . . 8 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
5250, 51syl 17 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
5352nn0red 11229 . . . . . 6 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℝ)
5416nn0red 11229 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℝ)
5527nn0red 11229 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℝ)
5654, 55readdcld 9948 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) ∈ ℝ)
5738nn0red 11229 . . . . . 6 (𝜑 → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℝ)
58 2rp 11713 . . . . . . . 8 2 ∈ ℝ+
5958a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ+)
60 sadasslem.4 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
6160nn0zd 11356 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
6259, 61rpexpcld 12894 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℝ+)
63 eqid 2610 . . . . . . 7 seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
64 eqid 2610 . . . . . . 7 (bits ↾ ℕ0) = (bits ↾ ℕ0)
652, 19, 63, 60, 64sadadd3 15021 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
66 eqidd 2611 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) mod (2↑𝑁)))
6753, 56, 57, 57, 62, 65, 66modadd12d 12588 . . . . 5 (𝜑 → ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)) = (((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)))
68 inss1 3795 . . . . . . . . . 10 ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ (𝐵 sadd 𝐶)
69 sadcl 15022 . . . . . . . . . . 11 ((𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐵 sadd 𝐶) ⊆ ℕ0)
7019, 30, 69syl2anc 691 . . . . . . . . . 10 (𝜑 → (𝐵 sadd 𝐶) ⊆ ℕ0)
7168, 70syl5ss 3579 . . . . . . . . 9 (𝜑 → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0)
72 inss2 3796 . . . . . . . . . 10 ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
73 ssfi 8065 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
745, 72, 73sylancl 693 . . . . . . . . 9 (𝜑 → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
75 elfpw 8151 . . . . . . . . 9 (((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin))
7671, 74, 75sylanbrc 695 . . . . . . . 8 (𝜑 → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
7714ffvelrni 6266 . . . . . . . 8 (((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
7876, 77syl 17 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
7978nn0red 11229 . . . . . 6 (𝜑 → ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) ∈ ℝ)
8055, 57readdcld 9948 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) ∈ ℝ)
81 eqidd 2611 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) mod (2↑𝑁)))
82 eqid 2610 . . . . . . 7 seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐵, 𝑚𝐶, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐵, 𝑚𝐶, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
8319, 30, 82, 60, 64sadadd3 15021 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)))
8454, 54, 79, 80, 62, 81, 83modadd12d 12588 . . . . 5 (𝜑 → ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))))) mod (2↑𝑁)))
8541, 67, 843eqtr4d 2654 . . . 4 (𝜑 → ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁)))) mod (2↑𝑁)))
86 eqid 2610 . . . . 5 seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 sadd 𝐵), 𝑚𝐶, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 sadd 𝐵), 𝑚𝐶, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
8744, 30, 86, 60, 64sadadd3 15021 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)))
88 eqid 2610 . . . . 5 seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚 ∈ (𝐵 sadd 𝐶), ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚 ∈ (𝐵 sadd 𝐶), ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
892, 70, 88, 60, 64sadadd3 15021 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁)))) mod (2↑𝑁)))
9085, 87, 893eqtr4d 2654 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)))
91 inss1 3795 . . . . . . . 8 (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ ((𝐴 sadd 𝐵) sadd 𝐶)
92 sadcl 15022 . . . . . . . . 9 (((𝐴 sadd 𝐵) ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
9344, 30, 92syl2anc 691 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
9491, 93syl5ss 3579 . . . . . . 7 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0)
95 inss2 3796 . . . . . . . 8 (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
96 ssfi 8065 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
975, 95, 96sylancl 693 . . . . . . 7 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
98 elfpw 8151 . . . . . . 7 ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin))
9994, 97, 98sylanbrc 695 . . . . . 6 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
10014ffvelrni 6266 . . . . . 6 ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
10199, 100syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
102101nn0red 11229 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℝ)
103101nn0ge0d 11231 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))))
104 fvres 6117 . . . . . . . . 9 (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))))
105101, 104syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))))
106 f1ocnvfv2 6433 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))
10711, 99, 106sylancr 694 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))
108105, 107eqtr3d 2646 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))
109108, 95syl6eqss 3618 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
110101nn0zd 11356 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℤ)
111 bitsfzo 14995 . . . . . . 7 ((((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
112110, 60, 111syl2anc 691 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
113109, 112mpbird 246 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
114 elfzolt2 12348 . . . . 5 (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) < (2↑𝑁))
115113, 114syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) < (2↑𝑁))
116 modid 12557 . . . 4 (((((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))))
117102, 62, 103, 115, 116syl22anc 1319 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))))
118 inss1 3795 . . . . . . . 8 ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ (𝐴 sadd (𝐵 sadd 𝐶))
119 sadcl 15022 . . . . . . . . 9 ((𝐴 ⊆ ℕ0 ∧ (𝐵 sadd 𝐶) ⊆ ℕ0) → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
1202, 70, 119syl2anc 691 . . . . . . . 8 (𝜑 → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
121118, 120syl5ss 3579 . . . . . . 7 (𝜑 → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ ℕ0)
122 inss2 3796 . . . . . . . 8 ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
123 ssfi 8065 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ Fin)
1245, 122, 123sylancl 693 . . . . . . 7 (𝜑 → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ Fin)
125 elfpw 8151 . . . . . . 7 (((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ Fin))
126121, 124, 125sylanbrc 695 . . . . . 6 (𝜑 → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
12714ffvelrni 6266 . . . . . 6 (((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℕ0)
128126, 127syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℕ0)
129128nn0red 11229 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℝ)
130 2nn 11062 . . . . . . 7 2 ∈ ℕ
131130a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
132131, 60nnexpcld 12892 . . . . 5 (𝜑 → (2↑𝑁) ∈ ℕ)
133132nnrpd 11746 . . . 4 (𝜑 → (2↑𝑁) ∈ ℝ+)
134128nn0ge0d 11231 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
135 fvres 6117 . . . . . . . . 9 (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℕ0 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))))
136128, 135syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))))
137 f1ocnvfv2 6433 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
13811, 126, 137sylancr 694 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
139136, 138eqtr3d 2646 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
140139, 122syl6eqss 3618 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
141128nn0zd 11356 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℤ)
142 bitsfzo 14995 . . . . . . 7 ((((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
143141, 60, 142syl2anc 691 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
144140, 143mpbird 246 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
145 elfzolt2 12348 . . . . 5 (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) < (2↑𝑁))
146144, 145syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) < (2↑𝑁))
147 modid 12557 . . . 4 (((((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
148129, 133, 134, 146, 147syl22anc 1319 . . 3 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
14990, 117, 1483eqtr3d 2652 . 2 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
150 f1of1 6049 . . . . 5 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0)
15111, 12, 150mp2b 10 . . . 4 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0
152 f1fveq 6420 . . . 4 (((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0 ∧ ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ↔ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
153151, 152mpan 702 . . 3 (((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ↔ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
15499, 126, 153syl2anc 691 . 2 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ↔ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
155149, 154mpbid 221 1 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  caddwcad 1536  wcel 1977  cin 3539  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  ccnv 5037  cres 5040  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cmpt2 6551  1𝑜c1o 7440  2𝑜c2o 7441  Fincfn 7841  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cz 11254  +crp 11708  ..^cfzo 12334   mod cmo 12530  seqcseq 12663  cexp 12722  bitscbits 14979   sadd csad 14980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-xor 1457  df-tru 1478  df-fal 1481  df-had 1524  df-cad 1537  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-bits 14982  df-sad 15011
This theorem is referenced by:  sadass  15031
  Copyright terms: Public domain W3C validator