MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd3 Structured version   Visualization version   GIF version

Theorem sadadd3 15021
Description: Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
sadadd3 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadadd3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn 11062 . . . . . . . . 9 2 ∈ ℕ
21a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
3 sadcp1.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
42, 3nnexpcld 12892 . . . . . . 7 (𝜑 → (2↑𝑁) ∈ ℕ)
54nnzd 11357 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℤ)
6 iddvds 14833 . . . . . 6 ((2↑𝑁) ∈ ℤ → (2↑𝑁) ∥ (2↑𝑁))
75, 6syl 17 . . . . 5 (𝜑 → (2↑𝑁) ∥ (2↑𝑁))
8 dvds0 14835 . . . . . 6 ((2↑𝑁) ∈ ℤ → (2↑𝑁) ∥ 0)
95, 8syl 17 . . . . 5 (𝜑 → (2↑𝑁) ∥ 0)
10 breq2 4587 . . . . . 6 ((2↑𝑁) = if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) → ((2↑𝑁) ∥ (2↑𝑁) ↔ (2↑𝑁) ∥ if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
11 breq2 4587 . . . . . 6 (0 = if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) → ((2↑𝑁) ∥ 0 ↔ (2↑𝑁) ∥ if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
1210, 11ifboth 4074 . . . . 5 (((2↑𝑁) ∥ (2↑𝑁) ∧ (2↑𝑁) ∥ 0) → (2↑𝑁) ∥ if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))
137, 9, 12syl2anc 691 . . . 4 (𝜑 → (2↑𝑁) ∥ if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))
14 inss1 3795 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵)
15 sadval.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℕ0)
16 sadval.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℕ0)
17 sadval.c . . . . . . . . . . 11 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
1815, 16, 17sadfval 15012 . . . . . . . . . 10 (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
19 ssrab2 3650 . . . . . . . . . 10 {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))} ⊆ ℕ0
2018, 19syl6eqss 3618 . . . . . . . . 9 (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0)
2114, 20syl5ss 3579 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0)
22 fzofi 12635 . . . . . . . . . 10 (0..^𝑁) ∈ Fin
2322a1i 11 . . . . . . . . 9 (𝜑 → (0..^𝑁) ∈ Fin)
24 inss2 3796 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
25 ssfi 8065 . . . . . . . . 9 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
2623, 24, 25sylancl 693 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
27 elfpw 8151 . . . . . . . 8 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin))
2821, 26, 27sylanbrc 695 . . . . . . 7 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
29 bitsf1o 15005 . . . . . . . . . 10 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
30 f1ocnv 6062 . . . . . . . . . 10 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
31 f1of 6050 . . . . . . . . . 10 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
3229, 30, 31mp2b 10 . . . . . . . . 9 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
33 sadcadd.k . . . . . . . . . 10 𝐾 = (bits ↾ ℕ0)
3433feq1i 5949 . . . . . . . . 9 (𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
3532, 34mpbir 220 . . . . . . . 8 𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0
3635ffvelrni 6266 . . . . . . 7 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
3728, 36syl 17 . . . . . 6 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
3837nn0cnd 11230 . . . . 5 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℂ)
394nncnd 10913 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℂ)
40 0cn 9911 . . . . . 6 0 ∈ ℂ
41 ifcl 4080 . . . . . 6 (((2↑𝑁) ∈ ℂ ∧ 0 ∈ ℂ) → if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) ∈ ℂ)
4239, 40, 41sylancl 693 . . . . 5 (𝜑 → if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) ∈ ℂ)
4338, 42pncan2d 10273 . . . 4 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))
4413, 43breqtrrd 4611 . . 3 (𝜑 → (2↑𝑁) ∥ (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))))
4537nn0zd 11356 . . . . 5 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ)
465adantr 480 . . . . . 6 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → (2↑𝑁) ∈ ℤ)
47 0zd 11266 . . . . . 6 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → 0 ∈ ℤ)
4846, 47ifclda 4070 . . . . 5 (𝜑 → if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) ∈ ℤ)
4945, 48zaddcld 11362 . . . 4 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) ∈ ℤ)
50 moddvds 14829 . . . 4 (((2↑𝑁) ∈ ℕ ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) ∈ ℤ ∧ (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ) → ((((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))))
514, 49, 45, 50syl3anc 1318 . . 3 (𝜑 → ((((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) − (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))))
5244, 51mpbird 246 . 2 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)))
5315, 16, 17, 3, 33sadadd2 15020 . . 3 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
5453oveq1d 6564 . 2 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) mod (2↑𝑁)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
5552, 54eqtr3d 2646 1 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  haddwhad 1523  caddwcad 1536  wcel 1977  {crab 2900  cin 3539  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  ccnv 5037  cres 5040  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cmpt2 6551  1𝑜c1o 7440  2𝑜c2o 7441  Fincfn 7841  cc 9813  0cc0 9815  1c1 9816   + caddc 9818  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cz 11254  ..^cfzo 12334   mod cmo 12530  seqcseq 12663  cexp 12722  cdvds 14821  bitscbits 14979   sadd csad 14980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-xor 1457  df-tru 1478  df-fal 1481  df-had 1524  df-cad 1537  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-bits 14982  df-sad 15011
This theorem is referenced by:  sadaddlem  15026  sadasslem  15030  sadeq  15032
  Copyright terms: Public domain W3C validator