Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrndistlt Structured version   Visualization version   GIF version

Theorem rrndistlt 39186
Description: Given two points in the space of n-dimensional real numbers, if every component is closer than 𝐸 then the distance between the two points is less then ((√‘𝑛) · 𝐸) (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rrndistlt.i (𝜑𝐼 ∈ Fin)
rrndistlt.z (𝜑𝐼 ≠ ∅)
rrndistlt.n 𝑁 = (#‘𝐼)
rrndistlt.x (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))
rrndistlt.y (𝜑𝑌 ∈ (ℝ ↑𝑚 𝐼))
rrndistlt.l ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸)
rrndistlt.e (𝜑𝐸 ∈ ℝ+)
rrndistlt.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrndistlt (𝜑 → (𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐼   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖
Allowed substitution hints:   𝐷(𝑖)   𝑁(𝑖)

Proof of Theorem rrndistlt
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrndistlt.i . . . . 5 (𝜑𝐼 ∈ Fin)
2 rrndistlt.z . . . . 5 (𝜑𝐼 ≠ ∅)
3 rrndistlt.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))
4 elmapi 7765 . . . . . . . . . . 11 (𝑋 ∈ (ℝ ↑𝑚 𝐼) → 𝑋:𝐼⟶ℝ)
53, 4syl 17 . . . . . . . . . 10 (𝜑𝑋:𝐼⟶ℝ)
6 ax-resscn 9872 . . . . . . . . . . 11 ℝ ⊆ ℂ
76a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
85, 7fssd 5970 . . . . . . . . 9 (𝜑𝑋:𝐼⟶ℂ)
98ffvelrnda 6267 . . . . . . . 8 ((𝜑𝑖𝐼) → (𝑋𝑖) ∈ ℂ)
10 rrndistlt.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (ℝ ↑𝑚 𝐼))
11 elmapi 7765 . . . . . . . . . . 11 (𝑌 ∈ (ℝ ↑𝑚 𝐼) → 𝑌:𝐼⟶ℝ)
1210, 11syl 17 . . . . . . . . . 10 (𝜑𝑌:𝐼⟶ℝ)
1312, 7fssd 5970 . . . . . . . . 9 (𝜑𝑌:𝐼⟶ℂ)
1413ffvelrnda 6267 . . . . . . . 8 ((𝜑𝑖𝐼) → (𝑌𝑖) ∈ ℂ)
159, 14subcld 10271 . . . . . . 7 ((𝜑𝑖𝐼) → ((𝑋𝑖) − (𝑌𝑖)) ∈ ℂ)
1615abscld 14023 . . . . . 6 ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) ∈ ℝ)
1716resqcld 12897 . . . . 5 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) ∈ ℝ)
18 rrndistlt.e . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
1918rpred 11748 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
2019resqcld 12897 . . . . . 6 (𝜑 → (𝐸↑2) ∈ ℝ)
2120adantr 480 . . . . 5 ((𝜑𝑖𝐼) → (𝐸↑2) ∈ ℝ)
22 rrndistlt.l . . . . . 6 ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸)
2315absge0d 14031 . . . . . . 7 ((𝜑𝑖𝐼) → 0 ≤ (abs‘((𝑋𝑖) − (𝑌𝑖))))
2419adantr 480 . . . . . . 7 ((𝜑𝑖𝐼) → 𝐸 ∈ ℝ)
2518adantr 480 . . . . . . . 8 ((𝜑𝑖𝐼) → 𝐸 ∈ ℝ+)
2625rpge0d 11752 . . . . . . 7 ((𝜑𝑖𝐼) → 0 ≤ 𝐸)
27 lt2sq 12799 . . . . . . 7 ((((abs‘((𝑋𝑖) − (𝑌𝑖))) ∈ ℝ ∧ 0 ≤ (abs‘((𝑋𝑖) − (𝑌𝑖)))) ∧ (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸)) → ((abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸 ↔ ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < (𝐸↑2)))
2816, 23, 24, 26, 27syl22anc 1319 . . . . . 6 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸 ↔ ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < (𝐸↑2)))
2922, 28mpbid 221 . . . . 5 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < (𝐸↑2))
301, 2, 17, 21, 29fsumlt 14373 . . . 4 (𝜑 → Σ𝑖𝐼 ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < Σ𝑖𝐼 (𝐸↑2))
315ffvelrnda 6267 . . . . . . . . 9 ((𝜑𝑖𝐼) → (𝑋𝑖) ∈ ℝ)
3212ffvelrnda 6267 . . . . . . . . 9 ((𝜑𝑖𝐼) → (𝑌𝑖) ∈ ℝ)
3331, 32resubcld 10337 . . . . . . . 8 ((𝜑𝑖𝐼) → ((𝑋𝑖) − (𝑌𝑖)) ∈ ℝ)
34 absresq 13890 . . . . . . . 8 (((𝑋𝑖) − (𝑌𝑖)) ∈ ℝ → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) = (((𝑋𝑖) − (𝑌𝑖))↑2))
3533, 34syl 17 . . . . . . 7 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) = (((𝑋𝑖) − (𝑌𝑖))↑2))
3635eqcomd 2616 . . . . . 6 ((𝜑𝑖𝐼) → (((𝑋𝑖) − (𝑌𝑖))↑2) = ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2))
3736sumeq2dv 14281 . . . . 5 (𝜑 → Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) = Σ𝑖𝐼 ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2))
386, 20sseldi 3566 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℂ)
39 fsumconst 14364 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝐸↑2) ∈ ℂ) → Σ𝑖𝐼 (𝐸↑2) = ((#‘𝐼) · (𝐸↑2)))
401, 38, 39syl2anc 691 . . . . . 6 (𝜑 → Σ𝑖𝐼 (𝐸↑2) = ((#‘𝐼) · (𝐸↑2)))
41 rrndistlt.n . . . . . . . . 9 𝑁 = (#‘𝐼)
42 eqcom 2617 . . . . . . . . 9 (𝑁 = (#‘𝐼) ↔ (#‘𝐼) = 𝑁)
4341, 42mpbi 219 . . . . . . . 8 (#‘𝐼) = 𝑁
4443oveq1i 6559 . . . . . . 7 ((#‘𝐼) · (𝐸↑2)) = (𝑁 · (𝐸↑2))
4544a1i 11 . . . . . 6 (𝜑 → ((#‘𝐼) · (𝐸↑2)) = (𝑁 · (𝐸↑2)))
4640, 45eqtr2d 2645 . . . . 5 (𝜑 → (𝑁 · (𝐸↑2)) = Σ𝑖𝐼 (𝐸↑2))
4737, 46breq12d 4596 . . . 4 (𝜑 → (Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) < (𝑁 · (𝐸↑2)) ↔ Σ𝑖𝐼 ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < Σ𝑖𝐼 (𝐸↑2)))
4830, 47mpbird 246 . . 3 (𝜑 → Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) < (𝑁 · (𝐸↑2)))
49 nfv 1830 . . . . 5 𝑖𝜑
5033resqcld 12897 . . . . 5 ((𝜑𝑖𝐼) → (((𝑋𝑖) − (𝑌𝑖))↑2) ∈ ℝ)
5149, 1, 50fsumreclf 38643 . . . 4 (𝜑 → Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) ∈ ℝ)
5233sqge0d 12898 . . . . 5 ((𝜑𝑖𝐼) → 0 ≤ (((𝑋𝑖) − (𝑌𝑖))↑2))
531, 50, 52fsumge0 14368 . . . 4 (𝜑 → 0 ≤ Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2))
54 hashcl 13009 . . . . . . . 8 (𝐼 ∈ Fin → (#‘𝐼) ∈ ℕ0)
551, 54syl 17 . . . . . . 7 (𝜑 → (#‘𝐼) ∈ ℕ0)
5641, 55syl5eqel 2692 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
5756nn0red 11229 . . . . 5 (𝜑𝑁 ∈ ℝ)
5857, 20remulcld 9949 . . . 4 (𝜑 → (𝑁 · (𝐸↑2)) ∈ ℝ)
5956nn0ge0d 11231 . . . . 5 (𝜑 → 0 ≤ 𝑁)
6019sqge0d 12898 . . . . 5 (𝜑 → 0 ≤ (𝐸↑2))
6157, 20, 59, 60mulge0d 10483 . . . 4 (𝜑 → 0 ≤ (𝑁 · (𝐸↑2)))
6251, 53, 58, 61sqrtltd 14014 . . 3 (𝜑 → (Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) < (𝑁 · (𝐸↑2)) ↔ (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) < (√‘(𝑁 · (𝐸↑2)))))
6348, 62mpbid 221 . 2 (𝜑 → (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) < (√‘(𝑁 · (𝐸↑2))))
64 rrndistlt.d . . . . . 6 𝐷 = (dist‘(ℝ^‘𝐼))
6564a1i 11 . . . . 5 (𝜑𝐷 = (dist‘(ℝ^‘𝐼)))
66 eqid 2610 . . . . . . 7 (ℝ^‘𝐼) = (ℝ^‘𝐼)
67 eqid 2610 . . . . . . 7 (ℝ ↑𝑚 𝐼) = (ℝ ↑𝑚 𝐼)
6866, 67rrxdsfi 39181 . . . . . 6 (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2))))
691, 68syl 17 . . . . 5 (𝜑 → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2))))
7065, 69eqtrd 2644 . . . 4 (𝜑𝐷 = (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2))))
71 fveq1 6102 . . . . . . . . . 10 (𝑓 = 𝑋 → (𝑓𝑖) = (𝑋𝑖))
7271adantr 480 . . . . . . . . 9 ((𝑓 = 𝑋𝑔 = 𝑌) → (𝑓𝑖) = (𝑋𝑖))
73 fveq1 6102 . . . . . . . . . 10 (𝑔 = 𝑌 → (𝑔𝑖) = (𝑌𝑖))
7473adantl 481 . . . . . . . . 9 ((𝑓 = 𝑋𝑔 = 𝑌) → (𝑔𝑖) = (𝑌𝑖))
7572, 74oveq12d 6567 . . . . . . . 8 ((𝑓 = 𝑋𝑔 = 𝑌) → ((𝑓𝑖) − (𝑔𝑖)) = ((𝑋𝑖) − (𝑌𝑖)))
7675oveq1d 6564 . . . . . . 7 ((𝑓 = 𝑋𝑔 = 𝑌) → (((𝑓𝑖) − (𝑔𝑖))↑2) = (((𝑋𝑖) − (𝑌𝑖))↑2))
7776sumeq2ad 38632 . . . . . 6 ((𝑓 = 𝑋𝑔 = 𝑌) → Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2) = Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2))
7877fveq2d 6107 . . . . 5 ((𝑓 = 𝑋𝑔 = 𝑌) → (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2)) = (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)))
7978adantl 481 . . . 4 ((𝜑 ∧ (𝑓 = 𝑋𝑔 = 𝑌)) → (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2)) = (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)))
8051, 53resqrtcld 14004 . . . 4 (𝜑 → (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) ∈ ℝ)
8170, 79, 3, 10, 80ovmpt2d 6686 . . 3 (𝜑 → (𝑋𝐷𝑌) = (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)))
82 sqrtmul 13848 . . . . 5 (((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) ∧ ((𝐸↑2) ∈ ℝ ∧ 0 ≤ (𝐸↑2))) → (√‘(𝑁 · (𝐸↑2))) = ((√‘𝑁) · (√‘(𝐸↑2))))
8357, 59, 20, 60, 82syl22anc 1319 . . . 4 (𝜑 → (√‘(𝑁 · (𝐸↑2))) = ((√‘𝑁) · (√‘(𝐸↑2))))
8418rpge0d 11752 . . . . . 6 (𝜑 → 0 ≤ 𝐸)
8519, 84sqrtsqd 14006 . . . . 5 (𝜑 → (√‘(𝐸↑2)) = 𝐸)
8685oveq2d 6565 . . . 4 (𝜑 → ((√‘𝑁) · (√‘(𝐸↑2))) = ((√‘𝑁) · 𝐸))
8783, 86eqtr2d 2645 . . 3 (𝜑 → ((√‘𝑁) · 𝐸) = (√‘(𝑁 · (𝐸↑2))))
8881, 87breq12d 4596 . 2 (𝜑 → ((𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸) ↔ (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) < (√‘(𝑁 · (𝐸↑2)))))
8963, 88mpbird 246 1 (𝜑 → (𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wss 3540  c0 3874   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑚 cmap 7744  Fincfn 7841  cc 9813  cr 9814  0cc0 9815   · cmul 9820   < clt 9953  cle 9954  cmin 10145  2c2 10947  0cn0 11169  +crp 11708  cexp 12722  #chash 12979  csqrt 13821  abscabs 13822  Σcsu 14264  distcds 15777  ℝ^crrx 22979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-field 18573  df-subrg 18601  df-staf 18668  df-srng 18669  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-cnfld 19568  df-refld 19770  df-dsmm 19895  df-frlm 19910  df-nm 22197  df-tng 22199  df-tch 22777  df-rrx 22981
This theorem is referenced by:  qndenserrnbllem  39190
  Copyright terms: Public domain W3C validator