Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgeqoa Structured version   Visualization version   GIF version

Theorem rdgeqoa 32394
Description: If a recursive function with an initial value 𝐴 at step 𝑁 is equal to itself with an initial value 𝐵 at step 𝑀, then every finite number of successor steps will also be equal. (Contributed by ML, 21-Oct-2020.)
Assertion
Ref Expression
rdgeqoa ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑋))))

Proof of Theorem rdgeqoa
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1056 . 2 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → 𝑋 ∈ ω)
2 eleq1 2676 . . . . 5 (𝑥 = 𝑋 → (𝑥 ∈ ω ↔ 𝑋 ∈ ω))
323anbi3d 1397 . . . 4 (𝑥 = 𝑋 → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω)))
4 oveq2 6557 . . . . . . 7 (𝑥 = 𝑋 → (𝑁 +𝑜 𝑥) = (𝑁 +𝑜 𝑋))
54fveq2d 6107 . . . . . 6 (𝑥 = 𝑋 → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑋)))
6 oveq2 6557 . . . . . . 7 (𝑥 = 𝑋 → (𝑀 +𝑜 𝑥) = (𝑀 +𝑜 𝑋))
76fveq2d 6107 . . . . . 6 (𝑥 = 𝑋 → (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑋)))
85, 7eqeq12d 2625 . . . . 5 (𝑥 = 𝑋 → ((rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑋))))
98imbi2d 329 . . . 4 (𝑥 = 𝑋 → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑋)))))
103, 9imbi12d 333 . . 3 (𝑥 = 𝑋 → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑋))))))
11 peano1 6977 . . . . 5 ∅ ∈ ω
12 oa0 7483 . . . . . . . . . . . 12 (𝑁 ∈ On → (𝑁 +𝑜 ∅) = 𝑁)
1312fveq2d 6107 . . . . . . . . . . 11 (𝑁 ∈ On → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 ∅)) = (rec(𝐹, 𝐴)‘𝑁))
1413eqcomd 2616 . . . . . . . . . 10 (𝑁 ∈ On → (rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐴)‘(𝑁 +𝑜 ∅)))
15 oa0 7483 . . . . . . . . . . . 12 (𝑀 ∈ On → (𝑀 +𝑜 ∅) = 𝑀)
1615fveq2d 6107 . . . . . . . . . . 11 (𝑀 ∈ On → (rec(𝐹, 𝐵)‘(𝑀 +𝑜 ∅)) = (rec(𝐹, 𝐵)‘𝑀))
1716eqcomd 2616 . . . . . . . . . 10 (𝑀 ∈ On → (rec(𝐹, 𝐵)‘𝑀) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 ∅)))
1814, 17eqeqan12d 2626 . . . . . . . . 9 ((𝑁 ∈ On ∧ 𝑀 ∈ On) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) ↔ (rec(𝐹, 𝐴)‘(𝑁 +𝑜 ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 ∅))))
1918biimpd 218 . . . . . . . 8 ((𝑁 ∈ On ∧ 𝑀 ∈ On) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 ∅))))
20 eleq1 2676 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥 ∈ ω ↔ ∅ ∈ ω))
21203anbi3d 1397 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω)))
2211biantru 525 . . . . . . . . . . . 12 (𝑀 ∈ On ↔ (𝑀 ∈ On ∧ ∅ ∈ ω))
2322anbi2i 726 . . . . . . . . . . 11 ((𝑁 ∈ On ∧ 𝑀 ∈ On) ↔ (𝑁 ∈ On ∧ (𝑀 ∈ On ∧ ∅ ∈ ω)))
24 3anass 1035 . . . . . . . . . . 11 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω) ↔ (𝑁 ∈ On ∧ (𝑀 ∈ On ∧ ∅ ∈ ω)))
2523, 24bitr4i 266 . . . . . . . . . 10 ((𝑁 ∈ On ∧ 𝑀 ∈ On) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω))
2621, 25syl6bbr 277 . . . . . . . . 9 (𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On)))
27 oveq2 6557 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑁 +𝑜 𝑥) = (𝑁 +𝑜 ∅))
2827fveq2d 6107 . . . . . . . . . . 11 (𝑥 = ∅ → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +𝑜 ∅)))
29 oveq2 6557 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑀 +𝑜 𝑥) = (𝑀 +𝑜 ∅))
3029fveq2d 6107 . . . . . . . . . . 11 (𝑥 = ∅ → (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 ∅)))
3128, 30eqeq12d 2625 . . . . . . . . . 10 (𝑥 = ∅ → ((rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +𝑜 ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 ∅))))
3231imbi2d 329 . . . . . . . . 9 (𝑥 = ∅ → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 ∅)))))
3326, 32imbi12d 333 . . . . . . . 8 (𝑥 = ∅ → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 ∅))))))
3419, 33mpbiri 247 . . . . . . 7 (𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))))
3534ax-gen 1713 . . . . . 6 𝑥(𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))))
36 sbc6g 3428 . . . . . 6 (∅ ∈ ω → ([∅ / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))) ↔ ∀𝑥(𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))))))
3735, 36mpbiri 247 . . . . 5 (∅ ∈ ω → [∅ / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))))
3811, 37ax-mp 5 . . . 4 [∅ / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))))
39 peano2b 6973 . . . . 5 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
40393anbi3i 1248 . . . . . . . 8 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω))
4140imbi1i 338 . . . . . . 7 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))))
42 nnon 6963 . . . . . . . . . . . . 13 (𝑥 ∈ ω → 𝑥 ∈ On)
43 oacl 7502 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ On ∧ 𝑥 ∈ On) → (𝑁 +𝑜 𝑥) ∈ On)
44 oacl 7502 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ On ∧ 𝑥 ∈ On) → (𝑀 +𝑜 𝑥) ∈ On)
4543, 44anim12i 588 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑀 ∈ On ∧ 𝑥 ∈ On)) → ((𝑁 +𝑜 𝑥) ∈ On ∧ (𝑀 +𝑜 𝑥) ∈ On))
46453impdir 1374 . . . . . . . . . . . . . . 15 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On) → ((𝑁 +𝑜 𝑥) ∈ On ∧ (𝑀 +𝑜 𝑥) ∈ On))
47 rdgsuc 7407 . . . . . . . . . . . . . . . . . 18 ((𝑁 +𝑜 𝑥) ∈ On → (rec(𝐹, 𝐴)‘suc (𝑁 +𝑜 𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥))))
48 fveq2 6103 . . . . . . . . . . . . . . . . . 18 ((rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) → (𝐹‘(rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥))) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))))
4947, 48sylan9eqr 2666 . . . . . . . . . . . . . . . . 17 (((rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) ∧ (𝑁 +𝑜 𝑥) ∈ On) → (rec(𝐹, 𝐴)‘suc (𝑁 +𝑜 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))))
5049adantrr 749 . . . . . . . . . . . . . . . 16 (((rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) ∧ ((𝑁 +𝑜 𝑥) ∈ On ∧ (𝑀 +𝑜 𝑥) ∈ On)) → (rec(𝐹, 𝐴)‘suc (𝑁 +𝑜 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))))
51 rdgsuc 7407 . . . . . . . . . . . . . . . . 17 ((𝑀 +𝑜 𝑥) ∈ On → (rec(𝐹, 𝐵)‘suc (𝑀 +𝑜 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))))
5251ad2antll 761 . . . . . . . . . . . . . . . 16 (((rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) ∧ ((𝑁 +𝑜 𝑥) ∈ On ∧ (𝑀 +𝑜 𝑥) ∈ On)) → (rec(𝐹, 𝐵)‘suc (𝑀 +𝑜 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))))
5350, 52eqtr4d 2647 . . . . . . . . . . . . . . 15 (((rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) ∧ ((𝑁 +𝑜 𝑥) ∈ On ∧ (𝑀 +𝑜 𝑥) ∈ On)) → (rec(𝐹, 𝐴)‘suc (𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +𝑜 𝑥)))
5446, 53sylan2 490 . . . . . . . . . . . . . 14 (((rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) ∧ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On)) → (rec(𝐹, 𝐴)‘suc (𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +𝑜 𝑥)))
5554ancoms 468 . . . . . . . . . . . . 13 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On) ∧ (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))) → (rec(𝐹, 𝐴)‘suc (𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +𝑜 𝑥)))
5642, 55syl3anl3 1368 . . . . . . . . . . . 12 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))) → (rec(𝐹, 𝐴)‘suc (𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +𝑜 𝑥)))
57 onasuc 7495 . . . . . . . . . . . . . . 15 ((𝑁 ∈ On ∧ 𝑥 ∈ ω) → (𝑁 +𝑜 suc 𝑥) = suc (𝑁 +𝑜 𝑥))
5857fveq2d 6107 . . . . . . . . . . . . . 14 ((𝑁 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐴)‘suc (𝑁 +𝑜 𝑥)))
59583adant2 1073 . . . . . . . . . . . . 13 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐴)‘suc (𝑁 +𝑜 𝑥)))
6059adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐴)‘suc (𝑁 +𝑜 𝑥)))
61 onasuc 7495 . . . . . . . . . . . . . . 15 ((𝑀 ∈ On ∧ 𝑥 ∈ ω) → (𝑀 +𝑜 suc 𝑥) = suc (𝑀 +𝑜 𝑥))
6261fveq2d 6107 . . . . . . . . . . . . . 14 ((𝑀 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +𝑜 𝑥)))
63623adant1 1072 . . . . . . . . . . . . 13 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +𝑜 𝑥)))
6463adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))) → (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +𝑜 𝑥)))
6556, 60, 643eqtr4d 2654 . . . . . . . . . . 11 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥)))
6665ex 449 . . . . . . . . . 10 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥))))
6766imim2d 55 . . . . . . . . 9 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥)))))
6840, 67sylbir 224 . . . . . . . 8 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥)))))
6968a2i 14 . . . . . . 7 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))) → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥)))))
7041, 69sylbi 206 . . . . . 6 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))) → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥)))))
71 sbcimg 3444 . . . . . . 7 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))) ↔ ([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → [suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))))))
72 sbc3an 3461 . . . . . . . . 9 ([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ ([suc 𝑥 / 𝑥]𝑁 ∈ On ∧ [suc 𝑥 / 𝑥]𝑀 ∈ On ∧ [suc 𝑥 / 𝑥]𝑥 ∈ ω))
73 sbcg 3470 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]𝑁 ∈ On ↔ 𝑁 ∈ On))
74 sbcg 3470 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]𝑀 ∈ On ↔ 𝑀 ∈ On))
75 sbcel1v 3462 . . . . . . . . . . 11 ([suc 𝑥 / 𝑥]𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
7675a1i 11 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]𝑥 ∈ ω ↔ suc 𝑥 ∈ ω))
7773, 74, 763anbi123d 1391 . . . . . . . . 9 (suc 𝑥 ∈ ω → (([suc 𝑥 / 𝑥]𝑁 ∈ On ∧ [suc 𝑥 / 𝑥]𝑀 ∈ On ∧ [suc 𝑥 / 𝑥]𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω)))
7872, 77syl5bb 271 . . . . . . . 8 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω)))
79 sbcimg 3444 . . . . . . . . 9 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))) ↔ ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → [suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))))
80 sbcg 3470 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) ↔ (rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀)))
81 sbceqg 3936 . . . . . . . . . . 11 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) ↔ suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))))
82 csbfv12 6141 . . . . . . . . . . . . 13 suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (suc 𝑥 / 𝑥rec(𝐹, 𝐴)‘suc 𝑥 / 𝑥(𝑁 +𝑜 𝑥))
83 csbconstg 3512 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥rec(𝐹, 𝐴) = rec(𝐹, 𝐴))
84 csbov123 6585 . . . . . . . . . . . . . . 15 suc 𝑥 / 𝑥(𝑁 +𝑜 𝑥) = (suc 𝑥 / 𝑥𝑁suc 𝑥 / 𝑥 +𝑜 suc 𝑥 / 𝑥𝑥)
85 csbconstg 3512 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥 +𝑜 = +𝑜 )
86 csbconstg 3512 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥𝑁 = 𝑁)
87 csbvarg 3955 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥𝑥 = suc 𝑥)
8885, 86, 87oveq123d 6570 . . . . . . . . . . . . . . 15 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥𝑁suc 𝑥 / 𝑥 +𝑜 suc 𝑥 / 𝑥𝑥) = (𝑁 +𝑜 suc 𝑥))
8984, 88syl5eq 2656 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(𝑁 +𝑜 𝑥) = (𝑁 +𝑜 suc 𝑥))
9083, 89fveq12d 6109 . . . . . . . . . . . . 13 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥rec(𝐹, 𝐴)‘suc 𝑥 / 𝑥(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)))
9182, 90syl5eq 2656 . . . . . . . . . . . 12 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)))
92 csbfv12 6141 . . . . . . . . . . . . 13 suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) = (suc 𝑥 / 𝑥rec(𝐹, 𝐵)‘suc 𝑥 / 𝑥(𝑀 +𝑜 𝑥))
93 csbconstg 3512 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥rec(𝐹, 𝐵) = rec(𝐹, 𝐵))
94 csbov123 6585 . . . . . . . . . . . . . . 15 suc 𝑥 / 𝑥(𝑀 +𝑜 𝑥) = (suc 𝑥 / 𝑥𝑀suc 𝑥 / 𝑥 +𝑜 suc 𝑥 / 𝑥𝑥)
95 csbconstg 3512 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥𝑀 = 𝑀)
9685, 95, 87oveq123d 6570 . . . . . . . . . . . . . . 15 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥𝑀suc 𝑥 / 𝑥 +𝑜 suc 𝑥 / 𝑥𝑥) = (𝑀 +𝑜 suc 𝑥))
9794, 96syl5eq 2656 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(𝑀 +𝑜 𝑥) = (𝑀 +𝑜 suc 𝑥))
9893, 97fveq12d 6109 . . . . . . . . . . . . 13 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥rec(𝐹, 𝐵)‘suc 𝑥 / 𝑥(𝑀 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥)))
9992, 98syl5eq 2656 . . . . . . . . . . . 12 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥)))
10091, 99eqeq12d 2625 . . . . . . . . . . 11 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥))))
10181, 100bitrd 267 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥))))
10280, 101imbi12d 333 . . . . . . . . 9 (suc 𝑥 ∈ ω → (([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → [suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥)))))
10379, 102bitrd 267 . . . . . . . 8 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥)))))
10478, 103imbi12d 333 . . . . . . 7 (suc 𝑥 ∈ ω → (([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → [suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥))))))
10571, 104bitrd 267 . . . . . 6 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 suc 𝑥))))))
10670, 105syl5ibr 235 . . . . 5 (suc 𝑥 ∈ ω → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))) → [suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))))))
10739, 106sylbi 206 . . . 4 (𝑥 ∈ ω → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))) → [suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥))))))
10838, 107findes 6988 . . 3 (𝑥 ∈ ω → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑥)))))
10910, 108vtoclga 3245 . 2 (𝑋 ∈ ω → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑋)))))
1101, 109mpcom 37 1 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  [wsbc 3402  csb 3499  c0 3874  Oncon0 5640  suc csuc 5642  cfv 5804  (class class class)co 6549  ωcom 6957  reccrdg 7392   +𝑜 coa 7444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451
This theorem is referenced by:  finxpreclem4  32407
  Copyright terms: Public domain W3C validator