MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1lem2 Structured version   Visualization version   GIF version

Theorem ramub1lem2 15569
Description: Lemma for ramub1 15570. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m (𝜑𝑀 ∈ ℕ)
ramub1.r (𝜑𝑅 ∈ Fin)
ramub1.f (𝜑𝐹:𝑅⟶ℕ)
ramub1.g 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
ramub1.1 (𝜑𝐺:𝑅⟶ℕ0)
ramub1.2 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
ramub1.3 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
ramub1.4 (𝜑𝑆 ∈ Fin)
ramub1.5 (𝜑 → (#‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
ramub1.6 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
ramub1.x (𝜑𝑋𝑆)
ramub1.h 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
Assertion
Ref Expression
ramub1lem2 (𝜑 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
Distinct variable groups:   𝑥,𝑢,𝑐,𝑦,𝑧,𝐹   𝑎,𝑏,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧,𝑀   𝐺,𝑎,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧   𝑅,𝑐,𝑢,𝑥,𝑦,𝑧   𝜑,𝑐,𝑢,𝑥,𝑦,𝑧   𝑆,𝑎,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧   𝐶,𝑐,𝑢,𝑥,𝑦,𝑧   𝐻,𝑐,𝑢,𝑥,𝑦,𝑧   𝐾,𝑐,𝑢,𝑥,𝑦,𝑧   𝑋,𝑎,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑆(𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑏)   𝐻(𝑖,𝑎,𝑏)   𝐾(𝑖,𝑎,𝑏)   𝑋(𝑏)

Proof of Theorem ramub1lem2
Dummy variables 𝑑 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ramub1.3 . . 3 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
2 ramub1.m . . . 4 (𝜑𝑀 ∈ ℕ)
3 nnm1nn0 11211 . . . 4 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
42, 3syl 17 . . 3 (𝜑 → (𝑀 − 1) ∈ ℕ0)
5 ramub1.r . . 3 (𝜑𝑅 ∈ Fin)
6 ramub1.1 . . 3 (𝜑𝐺:𝑅⟶ℕ0)
7 ramub1.2 . . 3 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
8 ramub1.4 . . . 4 (𝜑𝑆 ∈ Fin)
9 diffi 8077 . . . 4 (𝑆 ∈ Fin → (𝑆 ∖ {𝑋}) ∈ Fin)
108, 9syl 17 . . 3 (𝜑 → (𝑆 ∖ {𝑋}) ∈ Fin)
117nn0red 11229 . . . . 5 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℝ)
1211leidd 10473 . . . 4 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ≤ ((𝑀 − 1) Ramsey 𝐺))
13 hashcl 13009 . . . . . . 7 ((𝑆 ∖ {𝑋}) ∈ Fin → (#‘(𝑆 ∖ {𝑋})) ∈ ℕ0)
1410, 13syl 17 . . . . . 6 (𝜑 → (#‘(𝑆 ∖ {𝑋})) ∈ ℕ0)
1514nn0cnd 11230 . . . . 5 (𝜑 → (#‘(𝑆 ∖ {𝑋})) ∈ ℂ)
167nn0cnd 11230 . . . . 5 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℂ)
17 1cnd 9935 . . . . 5 (𝜑 → 1 ∈ ℂ)
18 undif1 3995 . . . . . . . 8 ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = (𝑆 ∪ {𝑋})
19 ramub1.x . . . . . . . . . 10 (𝜑𝑋𝑆)
2019snssd 4281 . . . . . . . . 9 (𝜑 → {𝑋} ⊆ 𝑆)
21 ssequn2 3748 . . . . . . . . 9 ({𝑋} ⊆ 𝑆 ↔ (𝑆 ∪ {𝑋}) = 𝑆)
2220, 21sylib 207 . . . . . . . 8 (𝜑 → (𝑆 ∪ {𝑋}) = 𝑆)
2318, 22syl5eq 2656 . . . . . . 7 (𝜑 → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆)
2423fveq2d 6107 . . . . . 6 (𝜑 → (#‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = (#‘𝑆))
25 neldifsnd 4263 . . . . . . 7 (𝜑 → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋}))
26 hashunsng 13042 . . . . . . . 8 (𝑋𝑆 → (((𝑆 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) → (#‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = ((#‘(𝑆 ∖ {𝑋})) + 1)))
2719, 26syl 17 . . . . . . 7 (𝜑 → (((𝑆 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) → (#‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = ((#‘(𝑆 ∖ {𝑋})) + 1)))
2810, 25, 27mp2and 711 . . . . . 6 (𝜑 → (#‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = ((#‘(𝑆 ∖ {𝑋})) + 1))
29 ramub1.5 . . . . . 6 (𝜑 → (#‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
3024, 28, 293eqtr3d 2652 . . . . 5 (𝜑 → ((#‘(𝑆 ∖ {𝑋})) + 1) = (((𝑀 − 1) Ramsey 𝐺) + 1))
3115, 16, 17, 30addcan2ad 10121 . . . 4 (𝜑 → (#‘(𝑆 ∖ {𝑋})) = ((𝑀 − 1) Ramsey 𝐺))
3212, 31breqtrrd 4611 . . 3 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ≤ (#‘(𝑆 ∖ {𝑋})))
33 ramub1.6 . . . . . 6 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
3433adantr 480 . . . . 5 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝐾:(𝑆𝐶𝑀)⟶𝑅)
351hashbcval 15544 . . . . . . . . . . . . . . 15 (((𝑆 ∖ {𝑋}) ∈ Fin ∧ (𝑀 − 1) ∈ ℕ0) → ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) = {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (#‘𝑥) = (𝑀 − 1)})
3610, 4, 35syl2anc 691 . . . . . . . . . . . . . 14 (𝜑 → ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) = {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (#‘𝑥) = (𝑀 − 1)})
3736eleq2d 2673 . . . . . . . . . . . . 13 (𝜑 → (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↔ 𝑢 ∈ {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (#‘𝑥) = (𝑀 − 1)}))
38 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (#‘𝑥) = (#‘𝑢))
3938eqeq1d 2612 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → ((#‘𝑥) = (𝑀 − 1) ↔ (#‘𝑢) = (𝑀 − 1)))
4039elrab 3331 . . . . . . . . . . . . 13 (𝑢 ∈ {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (#‘𝑥) = (𝑀 − 1)} ↔ (𝑢 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∧ (#‘𝑢) = (𝑀 − 1)))
4137, 40syl6bb 275 . . . . . . . . . . . 12 (𝜑 → (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↔ (𝑢 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∧ (#‘𝑢) = (𝑀 − 1))))
4241simprbda 651 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ∈ 𝒫 (𝑆 ∖ {𝑋}))
4342elpwid 4118 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ⊆ (𝑆 ∖ {𝑋}))
4443difss2d 3702 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢𝑆)
4520adantr 480 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → {𝑋} ⊆ 𝑆)
4644, 45unssd 3751 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ⊆ 𝑆)
47 vex 3176 . . . . . . . . . 10 𝑢 ∈ V
48 snex 4835 . . . . . . . . . 10 {𝑋} ∈ V
4947, 48unex 6854 . . . . . . . . 9 (𝑢 ∪ {𝑋}) ∈ V
5049elpw 4114 . . . . . . . 8 ((𝑢 ∪ {𝑋}) ∈ 𝒫 𝑆 ↔ (𝑢 ∪ {𝑋}) ⊆ 𝑆)
5146, 50sylibr 223 . . . . . . 7 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ∈ 𝒫 𝑆)
5210adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑆 ∖ {𝑋}) ∈ Fin)
53 ssfi 8065 . . . . . . . . . 10 (((𝑆 ∖ {𝑋}) ∈ Fin ∧ 𝑢 ⊆ (𝑆 ∖ {𝑋})) → 𝑢 ∈ Fin)
5452, 43, 53syl2anc 691 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ∈ Fin)
55 neldifsnd 4263 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋}))
5643, 55ssneldd 3571 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ¬ 𝑋𝑢)
5719adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑋𝑆)
58 hashunsng 13042 . . . . . . . . . 10 (𝑋𝑆 → ((𝑢 ∈ Fin ∧ ¬ 𝑋𝑢) → (#‘(𝑢 ∪ {𝑋})) = ((#‘𝑢) + 1)))
5957, 58syl 17 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ((𝑢 ∈ Fin ∧ ¬ 𝑋𝑢) → (#‘(𝑢 ∪ {𝑋})) = ((#‘𝑢) + 1)))
6054, 56, 59mp2and 711 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (#‘(𝑢 ∪ {𝑋})) = ((#‘𝑢) + 1))
6141simplbda 652 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (#‘𝑢) = (𝑀 − 1))
6261oveq1d 6564 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ((#‘𝑢) + 1) = ((𝑀 − 1) + 1))
632nncnd 10913 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
64 ax-1cn 9873 . . . . . . . . . 10 1 ∈ ℂ
65 npcan 10169 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀)
6663, 64, 65sylancl 693 . . . . . . . . 9 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
6766adantr 480 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀)
6860, 62, 673eqtrd 2648 . . . . . . 7 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (#‘(𝑢 ∪ {𝑋})) = 𝑀)
69 fveq2 6103 . . . . . . . . 9 (𝑥 = (𝑢 ∪ {𝑋}) → (#‘𝑥) = (#‘(𝑢 ∪ {𝑋})))
7069eqeq1d 2612 . . . . . . . 8 (𝑥 = (𝑢 ∪ {𝑋}) → ((#‘𝑥) = 𝑀 ↔ (#‘(𝑢 ∪ {𝑋})) = 𝑀))
7170elrab 3331 . . . . . . 7 ((𝑢 ∪ {𝑋}) ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀} ↔ ((𝑢 ∪ {𝑋}) ∈ 𝒫 𝑆 ∧ (#‘(𝑢 ∪ {𝑋})) = 𝑀))
7251, 68, 71sylanbrc 695 . . . . . 6 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
732nnnn0d 11228 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
741hashbcval 15544 . . . . . . . 8 ((𝑆 ∈ Fin ∧ 𝑀 ∈ ℕ0) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
758, 73, 74syl2anc 691 . . . . . . 7 (𝜑 → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
7675adantr 480 . . . . . 6 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
7772, 76eleqtrrd 2691 . . . . 5 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ∈ (𝑆𝐶𝑀))
7834, 77ffvelrnd 6268 . . . 4 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝐾‘(𝑢 ∪ {𝑋})) ∈ 𝑅)
79 ramub1.h . . . 4 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
8078, 79fmptd 6292 . . 3 (𝜑𝐻:((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))⟶𝑅)
811, 4, 5, 6, 7, 10, 32, 80rami 15557 . 2 (𝜑 → ∃𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))
8273adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑀 ∈ ℕ0)
835adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑅 ∈ Fin)
84 ramub1.f . . . . . . . . . . . 12 (𝜑𝐹:𝑅⟶ℕ)
8584adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝐹:𝑅⟶ℕ)
86 simprll 798 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑑𝑅)
8785, 86ffvelrnd 6268 . . . . . . . . . 10 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐹𝑑) ∈ ℕ)
88 nnm1nn0 11211 . . . . . . . . . 10 ((𝐹𝑑) ∈ ℕ → ((𝐹𝑑) − 1) ∈ ℕ0)
8987, 88syl 17 . . . . . . . . 9 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → ((𝐹𝑑) − 1) ∈ ℕ0)
9089adantr 480 . . . . . . . 8 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → ((𝐹𝑑) − 1) ∈ ℕ0)
9185ffvelrnda 6267 . . . . . . . . 9 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → (𝐹𝑦) ∈ ℕ)
9291nnnn0d 11228 . . . . . . . 8 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → (𝐹𝑦) ∈ ℕ0)
9390, 92ifcld 4081 . . . . . . 7 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)) ∈ ℕ0)
94 eqid 2610 . . . . . . 7 (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦))) = (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))
9593, 94fmptd 6292 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦))):𝑅⟶ℕ0)
96 equequ2 1940 . . . . . . . . . . . 12 (𝑥 = 𝑑 → (𝑦 = 𝑥𝑦 = 𝑑))
97 fveq2 6103 . . . . . . . . . . . . 13 (𝑥 = 𝑑 → (𝐹𝑥) = (𝐹𝑑))
9897oveq1d 6564 . . . . . . . . . . . 12 (𝑥 = 𝑑 → ((𝐹𝑥) − 1) = ((𝐹𝑑) − 1))
9996, 98ifbieq1d 4059 . . . . . . . . . . 11 (𝑥 = 𝑑 → if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)) = if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))
10099mpteq2dv 4673 . . . . . . . . . 10 (𝑥 = 𝑑 → (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦))) = (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦))))
101100oveq2d 6565 . . . . . . . . 9 (𝑥 = 𝑑 → (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))) = (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))))
102 ramub1.g . . . . . . . . 9 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
103 ovex 6577 . . . . . . . . 9 (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))) ∈ V
104101, 102, 103fvmpt 6191 . . . . . . . 8 (𝑑𝑅 → (𝐺𝑑) = (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))))
10586, 104syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐺𝑑) = (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))))
1066adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝐺:𝑅⟶ℕ0)
107106, 86ffvelrnd 6268 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐺𝑑) ∈ ℕ0)
108105, 107eqeltrrd 2689 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))) ∈ ℕ0)
109 simprlr 799 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋}))
110 simprrl 800 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐺𝑑) ≤ (#‘𝑤))
111105, 110eqbrtrrd 4607 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))) ≤ (#‘𝑤))
11233adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝐾:(𝑆𝐶𝑀)⟶𝑅)
1138adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑆 ∈ Fin)
114109elpwid 4118 . . . . . . . . 9 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑤 ⊆ (𝑆 ∖ {𝑋}))
115114difss2d 3702 . . . . . . . 8 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑤𝑆)
1161hashbcss 15546 . . . . . . . 8 ((𝑆 ∈ Fin ∧ 𝑤𝑆𝑀 ∈ ℕ0) → (𝑤𝐶𝑀) ⊆ (𝑆𝐶𝑀))
117113, 115, 82, 116syl3anc 1318 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑤𝐶𝑀) ⊆ (𝑆𝐶𝑀))
118112, 117fssresd 5984 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐾 ↾ (𝑤𝐶𝑀)):(𝑤𝐶𝑀)⟶𝑅)
1191, 82, 83, 95, 108, 109, 111, 118rami 15557 . . . . 5 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → ∃𝑐𝑅𝑣 ∈ 𝒫 𝑤(((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))
120 equequ1 1939 . . . . . . . . . . . . . 14 (𝑦 = 𝑐 → (𝑦 = 𝑑𝑐 = 𝑑))
121 fveq2 6103 . . . . . . . . . . . . . 14 (𝑦 = 𝑐 → (𝐹𝑦) = (𝐹𝑐))
122120, 121ifbieq2d 4061 . . . . . . . . . . . . 13 (𝑦 = 𝑐 → if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)) = if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)))
123 ovex 6577 . . . . . . . . . . . . . 14 ((𝐹𝑑) − 1) ∈ V
124 fvex 6113 . . . . . . . . . . . . . 14 (𝐹𝑐) ∈ V
125123, 124ifex 4106 . . . . . . . . . . . . 13 if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ∈ V
126122, 94, 125fvmpt 6191 . . . . . . . . . . . 12 (𝑐𝑅 → ((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) = if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)))
127126ad2antrl 760 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) = if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)))
128127breq1d 4593 . . . . . . . . . 10 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → (((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (#‘𝑣) ↔ if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣)))
129128anbi1d 737 . . . . . . . . 9 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) ↔ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}))))
1302ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑀 ∈ ℕ)
1315ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑅 ∈ Fin)
13284ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝐹:𝑅⟶ℕ)
1336ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝐺:𝑅⟶ℕ0)
1347ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
1358ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑆 ∈ Fin)
13629ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (#‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
13733ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝐾:(𝑆𝐶𝑀)⟶𝑅)
13819ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑋𝑆)
13986adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑑𝑅)
140114adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑤 ⊆ (𝑆 ∖ {𝑋}))
141110adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝐺𝑑) ≤ (#‘𝑤))
142 simprrr 801 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑}))
143142adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑}))
144 simprll 798 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑐𝑅)
145 simprlr 799 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑣 ∈ 𝒫 𝑤)
146145elpwid 4118 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑣𝑤)
147 simprrl 800 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣))
148 simprrr 801 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}))
149 cnvresima 5541 . . . . . . . . . . . . 13 ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}) = ((𝐾 “ {𝑐}) ∩ (𝑤𝐶𝑀))
150 inss1 3795 . . . . . . . . . . . . 13 ((𝐾 “ {𝑐}) ∩ (𝑤𝐶𝑀)) ⊆ (𝐾 “ {𝑐})
151149, 150eqsstri 3598 . . . . . . . . . . . 12 ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}) ⊆ (𝐾 “ {𝑐})
152148, 151syl6ss 3580 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝑣𝐶𝑀) ⊆ (𝐾 “ {𝑐}))
153130, 131, 132, 102, 133, 134, 1, 135, 136, 137, 138, 79, 139, 140, 141, 143, 144, 146, 147, 152ramub1lem1 15568 . . . . . . . . . 10 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
154153expr 641 . . . . . . . . 9 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
155129, 154sylbid 229 . . . . . . . 8 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
156155anassrs 678 . . . . . . 7 ((((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑐𝑅) ∧ 𝑣 ∈ 𝒫 𝑤) → ((((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
157156rexlimdva 3013 . . . . . 6 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑐𝑅) → (∃𝑣 ∈ 𝒫 𝑤(((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
158157reximdva 3000 . . . . 5 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (∃𝑐𝑅𝑣 ∈ 𝒫 𝑤(((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (#‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
159119, 158mpd 15 . . . 4 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
160159expr 641 . . 3 ((𝜑 ∧ (𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋}))) → (((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
161160rexlimdvva 3020 . 2 (𝜑 → (∃𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})((𝐺𝑑) ≤ (#‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
16281, 161mpd 15 1 (𝜑 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  ifcif 4036  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  cmpt 4643  ccnv 5037  cres 5040  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841  cc 9813  1c1 9816   + caddc 9818  cle 9954  cmin 10145  cn 10897  0cn0 11169  #chash 12979   Ramsey cram 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-ram 15543
This theorem is referenced by:  ramub1  15570
  Copyright terms: Public domain W3C validator