Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfx2 Structured version   Visualization version   GIF version

Theorem pfx2 40275
Description: A prefix of length 2. (Contributed by AV, 15-May-2020.)
Assertion
Ref Expression
pfx2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑊)) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩)

Proof of Theorem pfx2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 2nn0 11186 . . . 4 2 ∈ ℕ0
21a1i 11 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑊)) → 2 ∈ ℕ0)
3 lencl 13179 . . . 4 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ ℕ0)
43adantr 480 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑊)) → (#‘𝑊) ∈ ℕ0)
5 simpr 476 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑊)) → 2 ≤ (#‘𝑊))
6 elfz2nn0 12300 . . 3 (2 ∈ (0...(#‘𝑊)) ↔ (2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ 2 ≤ (#‘𝑊)))
72, 4, 5, 6syl3anbrc 1239 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑊)) → 2 ∈ (0...(#‘𝑊)))
8 pfxlen 40254 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → (#‘(𝑊 prefix 2)) = 2)
9 s2len 13484 . . . . . . 7 (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) = 2
109eqcomi 2619 . . . . . 6 2 = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩)
1110a1i 11 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → 2 = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩))
12 simpl 472 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → 𝑊 ∈ Word 𝑉)
13 simpr 476 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → 2 ∈ (0...(#‘𝑊)))
14 2nn 11062 . . . . . . . . . . . 12 2 ∈ ℕ
15 lbfzo0 12375 . . . . . . . . . . . 12 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
1614, 15mpbir 220 . . . . . . . . . . 11 0 ∈ (0..^2)
1716a1i 11 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → 0 ∈ (0..^2))
1812, 13, 173jca 1235 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → (𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊)) ∧ 0 ∈ (0..^2)))
1918adantr 480 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → (𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊)) ∧ 0 ∈ (0..^2)))
20 pfxfv 40262 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊)) ∧ 0 ∈ (0..^2)) → ((𝑊 prefix 2)‘0) = (𝑊‘0))
2119, 20syl 17 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → ((𝑊 prefix 2)‘0) = (𝑊‘0))
22 fvex 6113 . . . . . . . 8 (𝑊‘0) ∈ V
23 s2fv0 13482 . . . . . . . 8 ((𝑊‘0) ∈ V → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) = (𝑊‘0))
2422, 23ax-mp 5 . . . . . . 7 (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) = (𝑊‘0)
2521, 24syl6eqr 2662 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → ((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0))
26 1nn0 11185 . . . . . . . . . 10 1 ∈ ℕ0
27 1lt2 11071 . . . . . . . . . 10 1 < 2
28 elfzo0 12376 . . . . . . . . . 10 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
2926, 14, 27, 28mpbir3an 1237 . . . . . . . . 9 1 ∈ (0..^2)
30 pfxfv 40262 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊)) ∧ 1 ∈ (0..^2)) → ((𝑊 prefix 2)‘1) = (𝑊‘1))
3129, 30mp3an3 1405 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → ((𝑊 prefix 2)‘1) = (𝑊‘1))
32 fvex 6113 . . . . . . . . 9 (𝑊‘1) ∈ V
33 s2fv1 13483 . . . . . . . . 9 ((𝑊‘1) ∈ V → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1) = (𝑊‘1))
3432, 33ax-mp 5 . . . . . . . 8 (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1) = (𝑊‘1)
3531, 34syl6eqr 2662 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))
3635adantr 480 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))
37 0nn0 11184 . . . . . . . . 9 0 ∈ ℕ0
3837, 26pm3.2i 470 . . . . . . . 8 (0 ∈ ℕ0 ∧ 1 ∈ ℕ0)
3938a1i 11 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → (0 ∈ ℕ0 ∧ 1 ∈ ℕ0))
40 fveq2 6103 . . . . . . . . 9 (𝑖 = 0 → ((𝑊 prefix 2)‘𝑖) = ((𝑊 prefix 2)‘0))
41 fveq2 6103 . . . . . . . . 9 (𝑖 = 0 → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0))
4240, 41eqeq12d 2625 . . . . . . . 8 (𝑖 = 0 → (((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ ((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0)))
43 fveq2 6103 . . . . . . . . 9 (𝑖 = 1 → ((𝑊 prefix 2)‘𝑖) = ((𝑊 prefix 2)‘1))
44 fveq2 6103 . . . . . . . . 9 (𝑖 = 1 → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))
4543, 44eqeq12d 2625 . . . . . . . 8 (𝑖 = 1 → (((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1)))
4642, 45ralprg 4181 . . . . . . 7 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ (((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) ∧ ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))))
4739, 46syl 17 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → (∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ (((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) ∧ ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))))
4825, 36, 47mpbir2and 959 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))
49 eqeq1 2614 . . . . . . 7 ((#‘(𝑊 prefix 2)) = 2 → ((#‘(𝑊 prefix 2)) = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ↔ 2 = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩)))
50 oveq2 6557 . . . . . . . . 9 ((#‘(𝑊 prefix 2)) = 2 → (0..^(#‘(𝑊 prefix 2))) = (0..^2))
51 fzo0to2pr 12420 . . . . . . . . 9 (0..^2) = {0, 1}
5250, 51syl6eq 2660 . . . . . . . 8 ((#‘(𝑊 prefix 2)) = 2 → (0..^(#‘(𝑊 prefix 2))) = {0, 1})
5352raleqdv 3121 . . . . . . 7 ((#‘(𝑊 prefix 2)) = 2 → (∀𝑖 ∈ (0..^(#‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)))
5449, 53anbi12d 743 . . . . . 6 ((#‘(𝑊 prefix 2)) = 2 → (((#‘(𝑊 prefix 2)) = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)) ↔ (2 = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5554adantl 481 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → (((#‘(𝑊 prefix 2)) = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)) ↔ (2 = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5611, 48, 55mpbir2and 959 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) ∧ (#‘(𝑊 prefix 2)) = 2) → ((#‘(𝑊 prefix 2)) = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)))
578, 56mpdan 699 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → ((#‘(𝑊 prefix 2)) = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)))
58 pfxcl 40249 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 2) ∈ Word 𝑉)
5958adantr 480 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → (𝑊 prefix 2) ∈ Word 𝑉)
60 simp2 1055 . . . . . . . . . 10 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ 2 ≤ (#‘𝑊)) → (#‘𝑊) ∈ ℕ0)
61 1red 9934 . . . . . . . . . . . . . . 15 ((#‘𝑊) ∈ ℕ0 → 1 ∈ ℝ)
62 2re 10967 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
6362a1i 11 . . . . . . . . . . . . . . 15 ((#‘𝑊) ∈ ℕ0 → 2 ∈ ℝ)
64 nn0re 11178 . . . . . . . . . . . . . . 15 ((#‘𝑊) ∈ ℕ0 → (#‘𝑊) ∈ ℝ)
6561, 63, 643jca 1235 . . . . . . . . . . . . . 14 ((#‘𝑊) ∈ ℕ0 → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ))
66 ltleletr 10009 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ) → ((1 < 2 ∧ 2 ≤ (#‘𝑊)) → 1 ≤ (#‘𝑊)))
6765, 66syl 17 . . . . . . . . . . . . 13 ((#‘𝑊) ∈ ℕ0 → ((1 < 2 ∧ 2 ≤ (#‘𝑊)) → 1 ≤ (#‘𝑊)))
6827, 67mpani 708 . . . . . . . . . . . 12 ((#‘𝑊) ∈ ℕ0 → (2 ≤ (#‘𝑊) → 1 ≤ (#‘𝑊)))
6968imp 444 . . . . . . . . . . 11 (((#‘𝑊) ∈ ℕ0 ∧ 2 ≤ (#‘𝑊)) → 1 ≤ (#‘𝑊))
70693adant1 1072 . . . . . . . . . 10 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ 2 ≤ (#‘𝑊)) → 1 ≤ (#‘𝑊))
7160, 70jca 553 . . . . . . . . 9 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ 2 ≤ (#‘𝑊)) → ((#‘𝑊) ∈ ℕ0 ∧ 1 ≤ (#‘𝑊)))
72 elnnnn0c 11215 . . . . . . . . 9 ((#‘𝑊) ∈ ℕ ↔ ((#‘𝑊) ∈ ℕ0 ∧ 1 ≤ (#‘𝑊)))
7371, 72sylibr 223 . . . . . . . 8 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ 2 ≤ (#‘𝑊)) → (#‘𝑊) ∈ ℕ)
746, 73sylbi 206 . . . . . . 7 (2 ∈ (0...(#‘𝑊)) → (#‘𝑊) ∈ ℕ)
75 lbfzo0 12375 . . . . . . 7 (0 ∈ (0..^(#‘𝑊)) ↔ (#‘𝑊) ∈ ℕ)
7674, 75sylibr 223 . . . . . 6 (2 ∈ (0...(#‘𝑊)) → 0 ∈ (0..^(#‘𝑊)))
77 wrdsymbcl 13173 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(#‘𝑊))) → (𝑊‘0) ∈ 𝑉)
7876, 77sylan2 490 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → (𝑊‘0) ∈ 𝑉)
7926a1i 11 . . . . . . 7 (2 ∈ (0...(#‘𝑊)) → 1 ∈ ℕ0)
8065adantl 481 . . . . . . . . . . 11 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0) → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ))
81 ltletr 10008 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ) → ((1 < 2 ∧ 2 ≤ (#‘𝑊)) → 1 < (#‘𝑊)))
8280, 81syl 17 . . . . . . . . . 10 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0) → ((1 < 2 ∧ 2 ≤ (#‘𝑊)) → 1 < (#‘𝑊)))
8327, 82mpani 708 . . . . . . . . 9 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0) → (2 ≤ (#‘𝑊) → 1 < (#‘𝑊)))
84833impia 1253 . . . . . . . 8 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ 2 ≤ (#‘𝑊)) → 1 < (#‘𝑊))
856, 84sylbi 206 . . . . . . 7 (2 ∈ (0...(#‘𝑊)) → 1 < (#‘𝑊))
86 elfzo0 12376 . . . . . . 7 (1 ∈ (0..^(#‘𝑊)) ↔ (1 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 1 < (#‘𝑊)))
8779, 74, 85, 86syl3anbrc 1239 . . . . . 6 (2 ∈ (0...(#‘𝑊)) → 1 ∈ (0..^(#‘𝑊)))
88 wrdsymbcl 13173 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(#‘𝑊))) → (𝑊‘1) ∈ 𝑉)
8987, 88sylan2 490 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → (𝑊‘1) ∈ 𝑉)
9078, 89s2cld 13466 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → ⟨“(𝑊‘0)(𝑊‘1)”⟩ ∈ Word 𝑉)
91 eqwrd 13201 . . . 4 (((𝑊 prefix 2) ∈ Word 𝑉 ∧ ⟨“(𝑊‘0)(𝑊‘1)”⟩ ∈ Word 𝑉) → ((𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩ ↔ ((#‘(𝑊 prefix 2)) = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
9259, 90, 91syl2anc 691 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → ((𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩ ↔ ((#‘(𝑊 prefix 2)) = (#‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
9357, 92mpbird 246 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(#‘𝑊))) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩)
947, 93syldan 486 1 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑊)) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  {cpr 4127   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   < clt 9953  cle 9954  cn 10897  2c2 10947  0cn0 11169  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146  ⟨“cs2 13437   prefix cpfx 40244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-substr 13158  df-s2 13444  df-pfx 40245
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator