MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostthlem2 Structured version   Visualization version   GIF version

Theorem ostthlem2 25117
Description: Lemma for ostth 25128. Refine ostthlem1 25116 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
ostthlem1.1 (𝜑𝐹𝐴)
ostthlem1.2 (𝜑𝐺𝐴)
ostthlem2.3 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = (𝐺𝑝))
Assertion
Ref Expression
ostthlem2 (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝐺,𝑝   𝜑,𝑝   𝐴,𝑝   𝐹,𝑝
Allowed substitution hint:   𝑄(𝑝)

Proof of Theorem ostthlem2
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qrng.q . 2 𝑄 = (ℂflds ℚ)
2 qabsabv.a . 2 𝐴 = (AbsVal‘𝑄)
3 ostthlem1.1 . 2 (𝜑𝐹𝐴)
4 ostthlem1.2 . 2 (𝜑𝐺𝐴)
5 eluz2nn 11602 . . 3 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
6 fveq2 6103 . . . . . . 7 (𝑝 = 1 → (𝐹𝑝) = (𝐹‘1))
7 fveq2 6103 . . . . . . 7 (𝑝 = 1 → (𝐺𝑝) = (𝐺‘1))
86, 7eqeq12d 2625 . . . . . 6 (𝑝 = 1 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹‘1) = (𝐺‘1)))
98imbi2d 329 . . . . 5 (𝑝 = 1 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹‘1) = (𝐺‘1))))
10 fveq2 6103 . . . . . . 7 (𝑝 = 𝑦 → (𝐹𝑝) = (𝐹𝑦))
11 fveq2 6103 . . . . . . 7 (𝑝 = 𝑦 → (𝐺𝑝) = (𝐺𝑦))
1210, 11eqeq12d 2625 . . . . . 6 (𝑝 = 𝑦 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹𝑦) = (𝐺𝑦)))
1312imbi2d 329 . . . . 5 (𝑝 = 𝑦 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹𝑦) = (𝐺𝑦))))
14 fveq2 6103 . . . . . . 7 (𝑝 = 𝑧 → (𝐹𝑝) = (𝐹𝑧))
15 fveq2 6103 . . . . . . 7 (𝑝 = 𝑧 → (𝐺𝑝) = (𝐺𝑧))
1614, 15eqeq12d 2625 . . . . . 6 (𝑝 = 𝑧 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹𝑧) = (𝐺𝑧)))
1716imbi2d 329 . . . . 5 (𝑝 = 𝑧 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹𝑧) = (𝐺𝑧))))
18 fveq2 6103 . . . . . . 7 (𝑝 = (𝑦 · 𝑧) → (𝐹𝑝) = (𝐹‘(𝑦 · 𝑧)))
19 fveq2 6103 . . . . . . 7 (𝑝 = (𝑦 · 𝑧) → (𝐺𝑝) = (𝐺‘(𝑦 · 𝑧)))
2018, 19eqeq12d 2625 . . . . . 6 (𝑝 = (𝑦 · 𝑧) → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧))))
2120imbi2d 329 . . . . 5 (𝑝 = (𝑦 · 𝑧) → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
22 fveq2 6103 . . . . . . 7 (𝑝 = 𝑛 → (𝐹𝑝) = (𝐹𝑛))
23 fveq2 6103 . . . . . . 7 (𝑝 = 𝑛 → (𝐺𝑝) = (𝐺𝑛))
2422, 23eqeq12d 2625 . . . . . 6 (𝑝 = 𝑛 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹𝑛) = (𝐺𝑛)))
2524imbi2d 329 . . . . 5 (𝑝 = 𝑛 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹𝑛) = (𝐺𝑛))))
26 ax-1ne0 9884 . . . . . . 7 1 ≠ 0
271qrng1 25111 . . . . . . . 8 1 = (1r𝑄)
281qrng0 25110 . . . . . . . 8 0 = (0g𝑄)
292, 27, 28abv1z 18655 . . . . . . 7 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
303, 26, 29sylancl 693 . . . . . 6 (𝜑 → (𝐹‘1) = 1)
312, 27, 28abv1z 18655 . . . . . . 7 ((𝐺𝐴 ∧ 1 ≠ 0) → (𝐺‘1) = 1)
324, 26, 31sylancl 693 . . . . . 6 (𝜑 → (𝐺‘1) = 1)
3330, 32eqtr4d 2647 . . . . 5 (𝜑 → (𝐹‘1) = (𝐺‘1))
34 ostthlem2.3 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = (𝐺𝑝))
3534expcom 450 . . . . 5 (𝑝 ∈ ℙ → (𝜑 → (𝐹𝑝) = (𝐺𝑝)))
36 jcab 903 . . . . . 6 ((𝜑 → ((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧))) ↔ ((𝜑 → (𝐹𝑦) = (𝐺𝑦)) ∧ (𝜑 → (𝐹𝑧) = (𝐺𝑧))))
37 oveq12 6558 . . . . . . . . 9 (((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧)) → ((𝐹𝑦) · (𝐹𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
383adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝐹𝐴)
39 eluzelz 11573 . . . . . . . . . . . . 13 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
4039ad2antrl 760 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑦 ∈ ℤ)
41 zq 11670 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℚ)
4240, 41syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑦 ∈ ℚ)
43 eluzelz 11573 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
4443ad2antll 761 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑧 ∈ ℤ)
45 zq 11670 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → 𝑧 ∈ ℚ)
4644, 45syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑧 ∈ ℚ)
471qrngbas 25108 . . . . . . . . . . . 12 ℚ = (Base‘𝑄)
48 qex 11676 . . . . . . . . . . . . 13 ℚ ∈ V
49 cnfldmul 19573 . . . . . . . . . . . . . 14 · = (.r‘ℂfld)
501, 49ressmulr 15829 . . . . . . . . . . . . 13 (ℚ ∈ V → · = (.r𝑄))
5148, 50ax-mp 5 . . . . . . . . . . . 12 · = (.r𝑄)
522, 47, 51abvmul 18652 . . . . . . . . . . 11 ((𝐹𝐴𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
5338, 42, 46, 52syl3anc 1318 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
544adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝐺𝐴)
552, 47, 51abvmul 18652 . . . . . . . . . . 11 ((𝐺𝐴𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝐺‘(𝑦 · 𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
5654, 42, 46, 55syl3anc 1318 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → (𝐺‘(𝑦 · 𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
5753, 56eqeq12d 2625 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → ((𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)) ↔ ((𝐹𝑦) · (𝐹𝑧)) = ((𝐺𝑦) · (𝐺𝑧))))
5837, 57syl5ibr 235 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → (((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧)) → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧))))
5958expcom 450 . . . . . . 7 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (𝜑 → (((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧)) → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
6059a2d 29 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝜑 → ((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧))) → (𝜑 → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
6136, 60syl5bir 232 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((𝜑 → (𝐹𝑦) = (𝐺𝑦)) ∧ (𝜑 → (𝐹𝑧) = (𝐺𝑧))) → (𝜑 → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
629, 13, 17, 21, 25, 33, 35, 61prmind 15237 . . . 4 (𝑛 ∈ ℕ → (𝜑 → (𝐹𝑛) = (𝐺𝑛)))
6362impcom 445 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐺𝑛))
645, 63sylan2 490 . 2 ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))
651, 2, 3, 4, 64ostthlem1 25116 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   · cmul 9820  cn 10897  2c2 10947  cz 11254  cuz 11563  cq 11664  cprime 15223  s cress 15696  .rcmulr 15769  AbsValcabv 18639  fldccnfld 19567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-ico 12052  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-prm 15224  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-subg 17414  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-subrg 18601  df-abv 18640  df-cnfld 19568
This theorem is referenced by:  ostth1  25122  ostth3  25127
  Copyright terms: Public domain W3C validator