HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocsh Structured version   Visualization version   GIF version

Theorem ocsh 27526
Description: The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ocsh (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ S )

Proof of Theorem ocsh
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocval 27523 . . . 4 (𝐴 ⊆ ℋ → (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0})
2 ssrab2 3650 . . . 4 {𝑥 ∈ ℋ ∣ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0} ⊆ ℋ
31, 2syl6eqss 3618 . . 3 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
4 ssel 3562 . . . . . . 7 (𝐴 ⊆ ℋ → (𝑦𝐴𝑦 ∈ ℋ))
5 hi01 27337 . . . . . . 7 (𝑦 ∈ ℋ → (0 ·ih 𝑦) = 0)
64, 5syl6 34 . . . . . 6 (𝐴 ⊆ ℋ → (𝑦𝐴 → (0 ·ih 𝑦) = 0))
76ralrimiv 2948 . . . . 5 (𝐴 ⊆ ℋ → ∀𝑦𝐴 (0 ·ih 𝑦) = 0)
8 ax-hv0cl 27244 . . . . 5 0 ∈ ℋ
97, 8jctil 558 . . . 4 (𝐴 ⊆ ℋ → (0 ∈ ℋ ∧ ∀𝑦𝐴 (0 ·ih 𝑦) = 0))
10 ocel 27524 . . . 4 (𝐴 ⊆ ℋ → (0 ∈ (⊥‘𝐴) ↔ (0 ∈ ℋ ∧ ∀𝑦𝐴 (0 ·ih 𝑦) = 0)))
119, 10mpbird 246 . . 3 (𝐴 ⊆ ℋ → 0 ∈ (⊥‘𝐴))
123, 11jca 553 . 2 (𝐴 ⊆ ℋ → ((⊥‘𝐴) ⊆ ℋ ∧ 0 ∈ (⊥‘𝐴)))
13 ssel2 3563 . . . . . . . . . 10 ((𝐴 ⊆ ℋ ∧ 𝑧𝐴) → 𝑧 ∈ ℋ)
14 ax-his2 27324 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 + 𝑦) ·ih 𝑧) = ((𝑥 ·ih 𝑧) + (𝑦 ·ih 𝑧)))
15143expa 1257 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 + 𝑦) ·ih 𝑧) = ((𝑥 ·ih 𝑧) + (𝑦 ·ih 𝑧)))
16 oveq12 6558 . . . . . . . . . . . . . 14 (((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) → ((𝑥 ·ih 𝑧) + (𝑦 ·ih 𝑧)) = (0 + 0))
17 00id 10090 . . . . . . . . . . . . . 14 (0 + 0) = 0
1816, 17syl6eq 2660 . . . . . . . . . . . . 13 (((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) → ((𝑥 ·ih 𝑧) + (𝑦 ·ih 𝑧)) = 0)
1915, 18sylan9eq 2664 . . . . . . . . . . . 12 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0)) → ((𝑥 + 𝑦) ·ih 𝑧) = 0)
2019ex 449 . . . . . . . . . . 11 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) → ((𝑥 + 𝑦) ·ih 𝑧) = 0))
2120ancoms 468 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) → ((𝑥 + 𝑦) ·ih 𝑧) = 0))
2213, 21sylan 487 . . . . . . . . 9 (((𝐴 ⊆ ℋ ∧ 𝑧𝐴) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) → ((𝑥 + 𝑦) ·ih 𝑧) = 0))
2322an32s 842 . . . . . . . 8 (((𝐴 ⊆ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧𝐴) → (((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) → ((𝑥 + 𝑦) ·ih 𝑧) = 0))
2423ralimdva 2945 . . . . . . 7 ((𝐴 ⊆ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (∀𝑧𝐴 ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) → ∀𝑧𝐴 ((𝑥 + 𝑦) ·ih 𝑧) = 0))
2524imdistanda 725 . . . . . 6 (𝐴 ⊆ ℋ → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 + 𝑦) ·ih 𝑧) = 0)))
26 hvaddcl 27253 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) ∈ ℋ)
2726anim1i 590 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 + 𝑦) ·ih 𝑧) = 0) → ((𝑥 + 𝑦) ∈ ℋ ∧ ∀𝑧𝐴 ((𝑥 + 𝑦) ·ih 𝑧) = 0))
2825, 27syl6 34 . . . . 5 (𝐴 ⊆ ℋ → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0)) → ((𝑥 + 𝑦) ∈ ℋ ∧ ∀𝑧𝐴 ((𝑥 + 𝑦) ·ih 𝑧) = 0)))
29 ocel 27524 . . . . . . 7 (𝐴 ⊆ ℋ → (𝑥 ∈ (⊥‘𝐴) ↔ (𝑥 ∈ ℋ ∧ ∀𝑧𝐴 (𝑥 ·ih 𝑧) = 0)))
30 ocel 27524 . . . . . . 7 (𝐴 ⊆ ℋ → (𝑦 ∈ (⊥‘𝐴) ↔ (𝑦 ∈ ℋ ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0)))
3129, 30anbi12d 743 . . . . . 6 (𝐴 ⊆ ℋ → ((𝑥 ∈ (⊥‘𝐴) ∧ 𝑦 ∈ (⊥‘𝐴)) ↔ ((𝑥 ∈ ℋ ∧ ∀𝑧𝐴 (𝑥 ·ih 𝑧) = 0) ∧ (𝑦 ∈ ℋ ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0))))
32 an4 861 . . . . . . 7 (((𝑥 ∈ ℋ ∧ ∀𝑧𝐴 (𝑥 ·ih 𝑧) = 0) ∧ (𝑦 ∈ ℋ ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0)) ↔ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (∀𝑧𝐴 (𝑥 ·ih 𝑧) = 0 ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0)))
33 r19.26 3046 . . . . . . . 8 (∀𝑧𝐴 ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) ↔ (∀𝑧𝐴 (𝑥 ·ih 𝑧) = 0 ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0))
3433anbi2i 726 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0)) ↔ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (∀𝑧𝐴 (𝑥 ·ih 𝑧) = 0 ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0)))
3532, 34bitr4i 266 . . . . . 6 (((𝑥 ∈ ℋ ∧ ∀𝑧𝐴 (𝑥 ·ih 𝑧) = 0) ∧ (𝑦 ∈ ℋ ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0)) ↔ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0)))
3631, 35syl6bb 275 . . . . 5 (𝐴 ⊆ ℋ → ((𝑥 ∈ (⊥‘𝐴) ∧ 𝑦 ∈ (⊥‘𝐴)) ↔ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0))))
37 ocel 27524 . . . . 5 (𝐴 ⊆ ℋ → ((𝑥 + 𝑦) ∈ (⊥‘𝐴) ↔ ((𝑥 + 𝑦) ∈ ℋ ∧ ∀𝑧𝐴 ((𝑥 + 𝑦) ·ih 𝑧) = 0)))
3828, 36, 373imtr4d 282 . . . 4 (𝐴 ⊆ ℋ → ((𝑥 ∈ (⊥‘𝐴) ∧ 𝑦 ∈ (⊥‘𝐴)) → (𝑥 + 𝑦) ∈ (⊥‘𝐴)))
3938ralrimivv 2953 . . 3 (𝐴 ⊆ ℋ → ∀𝑥 ∈ (⊥‘𝐴)∀𝑦 ∈ (⊥‘𝐴)(𝑥 + 𝑦) ∈ (⊥‘𝐴))
40 mul01 10094 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
41 oveq2 6557 . . . . . . . . . . . . . 14 ((𝑦 ·ih 𝑧) = 0 → (𝑥 · (𝑦 ·ih 𝑧)) = (𝑥 · 0))
4241eqeq1d 2612 . . . . . . . . . . . . 13 ((𝑦 ·ih 𝑧) = 0 → ((𝑥 · (𝑦 ·ih 𝑧)) = 0 ↔ (𝑥 · 0) = 0))
4340, 42syl5ibrcom 236 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → ((𝑦 ·ih 𝑧) = 0 → (𝑥 · (𝑦 ·ih 𝑧)) = 0))
4443ad2antrl 760 . . . . . . . . . . 11 ((𝑧 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑦 ·ih 𝑧) = 0 → (𝑥 · (𝑦 ·ih 𝑧)) = 0))
45 ax-his3 27325 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) ·ih 𝑧) = (𝑥 · (𝑦 ·ih 𝑧)))
4645eqeq1d 2612 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑥 · 𝑦) ·ih 𝑧) = 0 ↔ (𝑥 · (𝑦 ·ih 𝑧)) = 0))
47463expa 1257 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (((𝑥 · 𝑦) ·ih 𝑧) = 0 ↔ (𝑥 · (𝑦 ·ih 𝑧)) = 0))
4847ancoms 468 . . . . . . . . . . 11 ((𝑧 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (((𝑥 · 𝑦) ·ih 𝑧) = 0 ↔ (𝑥 · (𝑦 ·ih 𝑧)) = 0))
4944, 48sylibrd 248 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑦 ·ih 𝑧) = 0 → ((𝑥 · 𝑦) ·ih 𝑧) = 0))
5013, 49sylan 487 . . . . . . . . 9 (((𝐴 ⊆ ℋ ∧ 𝑧𝐴) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑦 ·ih 𝑧) = 0 → ((𝑥 · 𝑦) ·ih 𝑧) = 0))
5150an32s 842 . . . . . . . 8 (((𝐴 ⊆ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧𝐴) → ((𝑦 ·ih 𝑧) = 0 → ((𝑥 · 𝑦) ·ih 𝑧) = 0))
5251ralimdva 2945 . . . . . . 7 ((𝐴 ⊆ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0 → ∀𝑧𝐴 ((𝑥 · 𝑦) ·ih 𝑧) = 0))
5352imdistanda 725 . . . . . 6 (𝐴 ⊆ ℋ → (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0) → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 · 𝑦) ·ih 𝑧) = 0)))
54 hvmulcl 27254 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
5554anim1i 590 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 · 𝑦) ·ih 𝑧) = 0) → ((𝑥 · 𝑦) ∈ ℋ ∧ ∀𝑧𝐴 ((𝑥 · 𝑦) ·ih 𝑧) = 0))
5653, 55syl6 34 . . . . 5 (𝐴 ⊆ ℋ → (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0) → ((𝑥 · 𝑦) ∈ ℋ ∧ ∀𝑧𝐴 ((𝑥 · 𝑦) ·ih 𝑧) = 0)))
5730anbi2d 736 . . . . . 6 (𝐴 ⊆ ℋ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (⊥‘𝐴)) ↔ (𝑥 ∈ ℂ ∧ (𝑦 ∈ ℋ ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0))))
58 anass 679 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0) ↔ (𝑥 ∈ ℂ ∧ (𝑦 ∈ ℋ ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0)))
5957, 58syl6bbr 277 . . . . 5 (𝐴 ⊆ ℋ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (⊥‘𝐴)) ↔ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0)))
60 ocel 27524 . . . . 5 (𝐴 ⊆ ℋ → ((𝑥 · 𝑦) ∈ (⊥‘𝐴) ↔ ((𝑥 · 𝑦) ∈ ℋ ∧ ∀𝑧𝐴 ((𝑥 · 𝑦) ·ih 𝑧) = 0)))
6156, 59, 603imtr4d 282 . . . 4 (𝐴 ⊆ ℋ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (⊥‘𝐴)) → (𝑥 · 𝑦) ∈ (⊥‘𝐴)))
6261ralrimivv 2953 . . 3 (𝐴 ⊆ ℋ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ (⊥‘𝐴)(𝑥 · 𝑦) ∈ (⊥‘𝐴))
6339, 62jca 553 . 2 (𝐴 ⊆ ℋ → (∀𝑥 ∈ (⊥‘𝐴)∀𝑦 ∈ (⊥‘𝐴)(𝑥 + 𝑦) ∈ (⊥‘𝐴) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (⊥‘𝐴)(𝑥 · 𝑦) ∈ (⊥‘𝐴)))
64 issh2 27450 . 2 ((⊥‘𝐴) ∈ S ↔ (((⊥‘𝐴) ⊆ ℋ ∧ 0 ∈ (⊥‘𝐴)) ∧ (∀𝑥 ∈ (⊥‘𝐴)∀𝑦 ∈ (⊥‘𝐴)(𝑥 + 𝑦) ∈ (⊥‘𝐴) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (⊥‘𝐴)(𝑥 · 𝑦) ∈ (⊥‘𝐴))))
6512, 63, 64sylanbrc 695 1 (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ S )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900  wss 3540  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815   + caddc 9818   · cmul 9820  chil 27160   + cva 27161   · csm 27162   ·ih csp 27163  0c0v 27165   S csh 27169  cort 27171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-hilex 27240  ax-hfvadd 27241  ax-hv0cl 27244  ax-hfvmul 27246  ax-hvmul0 27251  ax-hfi 27320  ax-his2 27324  ax-his3 27325
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-sh 27448  df-oc 27493
This theorem is referenced by:  shocsh  27527  ocss  27528  occl  27547  spanssoc  27592  ssjo  27690  chscllem2  27881
  Copyright terms: Public domain W3C validator