HomeHome Metamath Proof Explorer
Theorem List (p. 276 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 27501-27600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremissubgoilem 27501* Lemma for hhssabloilem 27502. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.)
((𝑥𝑌𝑦𝑌) → (𝑥𝐻𝑦) = (𝑥𝐺𝑦))       ((𝐴𝑌𝐵𝑌) → (𝐴𝐻𝐵) = (𝐴𝐺𝐵))
 
Theoremhhssabloilem 27502 Lemma for hhssabloi 27503. Formerly part of proof for hhssabloi 27503 which was based on the deprecated definition "SubGrpOp" for subgroups. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Revised by AV, 27-Aug-2021.) (New usage is discouraged.)
𝐻S       ( + ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ⊆ + )
 
Theoremhhssabloi 27503 Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Proof shortened by AV, 27-Aug-2021.) (New usage is discouraged.)
𝐻S       ( + ↾ (𝐻 × 𝐻)) ∈ AbelOp
 
Theoremhhssablo 27504 Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.)
(𝐻S → ( + ↾ (𝐻 × 𝐻)) ∈ AbelOp)
 
Theoremhhssnv 27505 Normed complex vector space property of a subspace. (Contributed by NM, 26-Mar-2008.) (New usage is discouraged.)
𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩    &   𝐻S       𝑊 ∈ NrmCVec
 
Theoremhhssnvt 27506 Normed complex vector space property of a subspace. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.)
𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩       (𝐻S𝑊 ∈ NrmCVec)
 
Theoremhhsst 27507 A member of S is a subspace. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩       (𝐻S𝑊 ∈ (SubSp‘𝑈))
 
Theoremhhshsslem1 27508 Lemma for hhsssh 27510. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩    &   𝑊 ∈ (SubSp‘𝑈)    &   𝐻 ⊆ ℋ       𝐻 = (BaseSet‘𝑊)
 
Theoremhhshsslem2 27509 Lemma for hhsssh 27510. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩    &   𝑊 ∈ (SubSp‘𝑈)    &   𝐻 ⊆ ℋ       𝐻S
 
Theoremhhsssh 27510 The predicate "𝐻 is a subspace of Hilbert space." (Contributed by NM, 25-Mar-2008.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, norm    &   𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩       (𝐻S ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))
 
Theoremhhsssh2 27511 The predicate "𝐻 is a subspace of Hilbert space." (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.)
𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩       (𝐻S ↔ (𝑊 ∈ NrmCVec ∧ 𝐻 ⊆ ℋ))
 
Theoremhhssba 27512 The base set of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩    &   𝐻S       𝐻 = (BaseSet‘𝑊)
 
Theoremhhssvs 27513 The vector subtraction operation on a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩    &   𝐻S       ( − ↾ (𝐻 × 𝐻)) = ( −𝑣𝑊)
 
Theoremhhssvsf 27514 Mapping of the vector subtraction operation on a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩    &   𝐻S       ( − ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻
 
Theoremhhssph 27515 Inner product space property of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩    &   𝐻S       𝑊 ∈ CPreHilOLD
 
Theoremhhssims 27516 Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩    &   𝐻S    &   𝐷 = ((norm ∘ − ) ↾ (𝐻 × 𝐻))       𝐷 = (IndMet‘𝑊)
 
Theoremhhssims2 27517 Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩    &   𝐷 = (IndMet‘𝑊)    &   𝐻S       𝐷 = ((norm ∘ − ) ↾ (𝐻 × 𝐻))
 
Theoremhhssmet 27518 Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩    &   𝐷 = (IndMet‘𝑊)    &   𝐻S       𝐷 ∈ (Met‘𝐻)
 
Theoremhhssmetdval 27519 Value of the distance function of the metric space of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩    &   𝐷 = (IndMet‘𝑊)    &   𝐻S       ((𝐴𝐻𝐵𝐻) → (𝐴𝐷𝐵) = (norm‘(𝐴 𝐵)))
 
Theoremhhsscms 27520 The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩    &   𝐷 = (IndMet‘𝑊)    &   𝐻C       𝐷 ∈ (CMet‘𝐻)
 
Theoremhhssbn 27521 Banach space property of a closed subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩    &   𝐻C       𝑊 ∈ CBan
 
Theoremhhsshl 27522 Hilbert space property of a closed subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩    &   𝐻C       𝑊 ∈ CHilOLD
 
Theoremocval 27523* Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
(𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
 
Theoremocel 27524* Membership in orthogonal complement of H subset. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
(𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0)))
 
Theoremshocel 27525* Membership in orthogonal complement of H subspace. (Contributed by NM, 9-Oct-1999.) (New usage is discouraged.)
(𝐻S → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0)))
 
Theoremocsh 27526 The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
(𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ S )
 
Theoremshocsh 27527 The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 10-Oct-1999.) (New usage is discouraged.)
(𝐴S → (⊥‘𝐴) ∈ S )
 
Theoremocss 27528 An orthogonal complement is a subset of Hilbert space. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
(𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
 
Theoremshocss 27529 An orthogonal complement is a subset of Hilbert space. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.)
(𝐴S → (⊥‘𝐴) ⊆ ℋ)
 
Theoremoccon 27530 Contraposition law for orthogonal complement. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.)
((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴)))
 
Theoremoccon2 27531 Double contraposition for orthogonal complement. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.)
((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴𝐵 → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘𝐵))))
 
Theoremoccon2i 27532 Double contraposition for orthogonal complement. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
𝐴 ⊆ ℋ    &   𝐵 ⊆ ℋ       (𝐴𝐵 → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘𝐵)))
 
Theoremoc0 27533 The zero vector belongs to an orthogonal complement of a Hilbert subspace. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.)
(𝐻S → 0 ∈ (⊥‘𝐻))
 
Theoremocorth 27534 Members of a subset and its complement are orthogonal. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
(𝐻 ⊆ ℋ → ((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0))
 
Theoremshocorth 27535 Members of a subspace and its complement are orthogonal. (Contributed by NM, 10-Oct-1999.) (New usage is discouraged.)
(𝐻S → ((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0))
 
Theoremococss 27536 Inclusion in complement of complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
(𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴)))
 
Theoremshococss 27537 Inclusion in complement of complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 10-Oct-1999.) (New usage is discouraged.)
(𝐴S𝐴 ⊆ (⊥‘(⊥‘𝐴)))
 
Theoremshorth 27538 Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.)
(𝐻S → (𝐺 ⊆ (⊥‘𝐻) → ((𝐴𝐺𝐵𝐻) → (𝐴 ·ih 𝐵) = 0)))
 
Theoremocin 27539 Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.)
(𝐴S → (𝐴 ∩ (⊥‘𝐴)) = 0)
 
Theoremoccon3 27540 Hilbert lattice contraposition law. (Contributed by Mario Carneiro, 18-May-2014.) (New usage is discouraged.)
((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴)))
 
Theoremocnel 27541 A nonzero vector in the complement of a subspace does not belong to the subspace. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.)
((𝐻S𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0) → ¬ 𝐴𝐻)
 
Theoremchocvali 27542* Value of the orthogonal complement of a Hilbert lattice element. The orthogonal complement of 𝐴 is the set of vectors that are orthogonal to all vectors in 𝐴. (Contributed by NM, 8-Aug-2004.) (New usage is discouraged.)
𝐴C       (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0}
 
Theoremshuni 27543 Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
(𝜑𝐻S )    &   (𝜑𝐾S )    &   (𝜑 → (𝐻𝐾) = 0)    &   (𝜑𝐴𝐻)    &   (𝜑𝐵𝐾)    &   (𝜑𝐶𝐻)    &   (𝜑𝐷𝐾)    &   (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))       (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremchocunii 27544 Lemma for uniqueness part of Projection Theorem. Theorem 3.7(i) of [Beran] p. 102 (uniqueness part). (Contributed by NM, 23-Oct-1999.) (Proof shortened by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
𝐻C       (((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theorempjhthmo 27545* Projection Theorem, uniqueness part. Any two disjoint subspaces yield a unique decomposition of vectors into each subspace. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → ∃*𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
 
Theoremoccllem 27546 Lemma for occl 27547. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
(𝜑𝐴 ⊆ ℋ)    &   (𝜑𝐹 ∈ Cauchy)    &   (𝜑𝐹:ℕ⟶(⊥‘𝐴))    &   (𝜑𝐵𝐴)       (𝜑 → (( ⇝𝑣𝐹) ·ih 𝐵) = 0)
 
Theoremoccl 27547 Closure of complement of Hilbert subset. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 8-Aug-2000.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
(𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ C )
 
Theoremshoccl 27548 Closure of complement of Hilbert subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 13-Oct-1999.) (New usage is discouraged.)
(𝐴S → (⊥‘𝐴) ∈ C )
 
Theoremchoccl 27549 Closure of complement of Hilbert subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.)
(𝐴C → (⊥‘𝐴) ∈ C )
 
Theoremchoccli 27550 Closure of C orthocomplement. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.)
𝐴C       (⊥‘𝐴) ∈ C
 
20.4.4  Subspace sum, span, lattice join, lattice supremum
 
Definitiondf-shs 27551* Define subspace sum in S. See shsval 27555, shsval2i 27630, and shsval3i 27631 for its value. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.)
+ = (𝑥S , 𝑦S ↦ ( + “ (𝑥 × 𝑦)))
 
Definitiondf-span 27552* Define the linear span of a subset of Hilbert space. Definition of span in [Schechter] p. 276. See spanval 27576 for its value. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
span = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦S𝑥𝑦})
 
Definitiondf-chj 27553* Define Hilbert lattice join. See chjval 27595 for its value and chjcl 27600 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to C; see sshjcl 27598. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.)
= (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
 
Definitiondf-chsup 27554 Define the supremum of a set of Hilbert lattice elements. See chsupval2 27653 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice C, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 27582. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.)
= (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
 
Theoremshsval 27555 Value of subspace sum of two Hilbert space subspaces. Definition of subspace sum in [Kalmbach] p. 65. (Contributed by NM, 16-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
((𝐴S𝐵S ) → (𝐴 + 𝐵) = ( + “ (𝐴 × 𝐵)))
 
Theoremshsss 27556 The subspace sum is a subset of Hilbert space. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
((𝐴S𝐵S ) → (𝐴 + 𝐵) ⊆ ℋ)
 
Theoremshsel 27557* Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004.) (Revised by Mario Carneiro, 29-Jan-2014.) (New usage is discouraged.)
((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
 
Theoremshsel3 27558* Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.)
((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
 
Theoremshseli 27559* Membership in subspace sum. (Contributed by NM, 4-May-2000.) (New usage is discouraged.)
𝐴S    &   𝐵S       (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦))
 
Theoremshscli 27560 Closure of subspace sum. (Contributed by NM, 15-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
𝐴S    &   𝐵S       (𝐴 + 𝐵) ∈ S
 
Theoremshscl 27561 Closure of subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.)
((𝐴S𝐵S ) → (𝐴 + 𝐵) ∈ S )
 
Theoremshscom 27562 Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.)
((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremshsva 27563 Vector sum belongs to subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.)
((𝐴S𝐵S ) → ((𝐶𝐴𝐷𝐵) → (𝐶 + 𝐷) ∈ (𝐴 + 𝐵)))
 
Theoremshsel1 27564 A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.)
((𝐴S𝐵S ) → (𝐶𝐴𝐶 ∈ (𝐴 + 𝐵)))
 
Theoremshsel2 27565 A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.)
((𝐴S𝐵S ) → (𝐶𝐵𝐶 ∈ (𝐴 + 𝐵)))
 
Theoremshsvs 27566 Vector subtraction belongs to subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.)
((𝐴S𝐵S ) → ((𝐶𝐴𝐷𝐵) → (𝐶 𝐷) ∈ (𝐴 + 𝐵)))
 
Theoremshsub1 27567 Subspace sum is an upper bound of its arguments. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.)
((𝐴S𝐵S ) → 𝐴 ⊆ (𝐴 + 𝐵))
 
Theoremshsub2 27568 Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.)
((𝐴S𝐵S ) → 𝐴 ⊆ (𝐵 + 𝐴))
 
Theoremchoc0 27569 The orthocomplement of the zero subspace is the unit subspace. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.)
(⊥‘0) = ℋ
 
Theoremchoc1 27570 The orthocomplement of the unit subspace is the zero subspace. Does not require Axiom of Choice. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
(⊥‘ ℋ) = 0
 
Theoremchocnul 27571 Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.)
(⊥‘∅) = ℋ
 
Theoremshintcli 27572 Closure of intersection of a nonempty subset of S. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
(𝐴S𝐴 ≠ ∅)        𝐴S
 
Theoremshintcl 27573 The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
((𝐴S𝐴 ≠ ∅) → 𝐴S )
 
Theoremchintcli 27574 The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
(𝐴C𝐴 ≠ ∅)        𝐴C
 
Theoremchintcl 27575 The intersection (infimum) of a nonempty subset of C belongs to C. Part of Theorem 3.13 of [Beran] p. 108. Also part of Definition 3.4-1 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
((𝐴C𝐴 ≠ ∅) → 𝐴C )
 
Theoremspanval 27576* Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in [Schechter] p. 276. (Contributed by NM, 2-Jun-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
(𝐴 ⊆ ℋ → (span‘𝐴) = {𝑥S𝐴𝑥})
 
Theoremhsupval 27577 Value of supremum of set of subsets of Hilbert space. For an alternate version of the value, see hsupval2 27652. (Contributed by NM, 9-Dec-2003.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
(𝐴 ⊆ 𝒫 ℋ → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
 
Theoremchsupval 27578 The value of the supremum of a set of closed subspaces of Hilbert space. For an alternate version of the value, see chsupval2 27653. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.)
(𝐴C → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
 
Theoremspancl 27579 The span of a subset of Hilbert space is a subspace. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
(𝐴 ⊆ ℋ → (span‘𝐴) ∈ S )
 
Theoremelspancl 27580 A member of a span is a vector. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.)
((𝐴 ⊆ ℋ ∧ 𝐵 ∈ (span‘𝐴)) → 𝐵 ∈ ℋ)
 
Theoremshsupcl 27581 Closure of the subspace supremum of set of subsets of Hilbert space. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.)
(𝐴 ⊆ 𝒫 ℋ → (span‘ 𝐴) ∈ S )
 
Theoremhsupcl 27582 Closure of supremum of set of subsets of Hilbert space. Note that the supremum belongs to C even if the subsets do not. (Contributed by NM, 10-Nov-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
(𝐴 ⊆ 𝒫 ℋ → ( 𝐴) ∈ C )
 
Theoremchsupcl 27583 Closure of supremum of subset of C. Definition of supremum in Proposition 1 of [Kalmbach] p. 65. Shows that C is a complete lattice. Also part of Definition 3.4-1 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 10-Nov-1999.) (New usage is discouraged.)
(𝐴C → ( 𝐴) ∈ C )
 
Theoremhsupss 27584 Subset relation for supremum of Hilbert space subsets. (Contributed by NM, 24-Nov-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴𝐵 → ( 𝐴) ⊆ ( 𝐵)))
 
Theoremchsupss 27585 Subset relation for supremum of subset of C. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.)
((𝐴C𝐵C ) → (𝐴𝐵 → ( 𝐴) ⊆ ( 𝐵)))
 
Theoremhsupunss 27586 The union of a set of Hilbert space subsets is smaller than its supremum. (Contributed by NM, 24-Nov-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
(𝐴 ⊆ 𝒫 ℋ → 𝐴 ⊆ ( 𝐴))
 
Theoremchsupunss 27587 The union of a set of closed subspaces is smaller than its supremum. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.)
(𝐴C 𝐴 ⊆ ( 𝐴))
 
Theoremspanss2 27588 A subset of Hilbert space is included in its span. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
(𝐴 ⊆ ℋ → 𝐴 ⊆ (span‘𝐴))
 
Theoremshsupunss 27589 The union of a set of subspaces is smaller than its supremum. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.)
(𝐴S 𝐴 ⊆ (span‘ 𝐴))
 
Theoremspanid 27590 A subspace of Hilbert space is its own span. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
(𝐴S → (span‘𝐴) = 𝐴)
 
Theoremspanss 27591 Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
((𝐵 ⊆ ℋ ∧ 𝐴𝐵) → (span‘𝐴) ⊆ (span‘𝐵))
 
Theoremspanssoc 27592 The span of a subset of Hilbert space is less than or equal to its closure (double orthogonal complement). (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
(𝐴 ⊆ ℋ → (span‘𝐴) ⊆ (⊥‘(⊥‘𝐴)))
 
Theoremsshjval 27593 Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
 
Theoremshjval 27594 Value of join in S. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
((𝐴S𝐵S ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
 
Theoremchjval 27595 Value of join in C. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
((𝐴C𝐵C ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
 
Theoremchjvali 27596 Value of join in C. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵)))
 
Theoremsshjval3 27597 Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in [Beran] p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice C. (Contributed by NM, 2-Mar-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = ( ‘{𝐴, 𝐵}))
 
Theoremsshjcl 27598 Closure of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.)
((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) ∈ C )
 
Theoremshjcl 27599 Closure of join in S. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.)
((𝐴S𝐵S ) → (𝐴 𝐵) ∈ C )
 
Theoremchjcl 27600 Closure of join in C. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.)
((𝐴C𝐵C ) → (𝐴 𝐵) ∈ C )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >