HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm-ii-i Structured version   Visualization version   GIF version

Theorem norm-ii-i 27378
Description: Triangle inequality for norms. Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm-ii.1 𝐴 ∈ ℋ
norm-ii.2 𝐵 ∈ ℋ
Assertion
Ref Expression
norm-ii-i (norm‘(𝐴 + 𝐵)) ≤ ((norm𝐴) + (norm𝐵))

Proof of Theorem norm-ii-i
StepHypRef Expression
1 1re 9918 . . . . . . . . . . 11 1 ∈ ℝ
2 ax-1cn 9873 . . . . . . . . . . . 12 1 ∈ ℂ
32cjrebi 13762 . . . . . . . . . . 11 (1 ∈ ℝ ↔ (∗‘1) = 1)
41, 3mpbi 219 . . . . . . . . . 10 (∗‘1) = 1
54oveq1i 6559 . . . . . . . . 9 ((∗‘1) · (𝐵 ·ih 𝐴)) = (1 · (𝐵 ·ih 𝐴))
6 norm-ii.2 . . . . . . . . . . 11 𝐵 ∈ ℋ
7 norm-ii.1 . . . . . . . . . . 11 𝐴 ∈ ℋ
86, 7hicli 27322 . . . . . . . . . 10 (𝐵 ·ih 𝐴) ∈ ℂ
98mulid2i 9922 . . . . . . . . 9 (1 · (𝐵 ·ih 𝐴)) = (𝐵 ·ih 𝐴)
105, 9eqtri 2632 . . . . . . . 8 ((∗‘1) · (𝐵 ·ih 𝐴)) = (𝐵 ·ih 𝐴)
117, 6hicli 27322 . . . . . . . . 9 (𝐴 ·ih 𝐵) ∈ ℂ
1211mulid2i 9922 . . . . . . . 8 (1 · (𝐴 ·ih 𝐵)) = (𝐴 ·ih 𝐵)
1310, 12oveq12i 6561 . . . . . . 7 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) = ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))
14 abs1 13885 . . . . . . . 8 (abs‘1) = 1
152, 6, 7, 14normlem7 27357 . . . . . . 7 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))
1613, 15eqbrtrri 4606 . . . . . 6 ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)) ≤ (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))
17 eqid 2610 . . . . . . . . . 10 -(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) = -(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵)))
182, 6, 7, 17normlem2 27352 . . . . . . . . 9 -(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ
192cjcli 13757 . . . . . . . . . . . 12 (∗‘1) ∈ ℂ
2019, 8mulcli 9924 . . . . . . . . . . 11 ((∗‘1) · (𝐵 ·ih 𝐴)) ∈ ℂ
212, 11mulcli 9924 . . . . . . . . . . 11 (1 · (𝐴 ·ih 𝐵)) ∈ ℂ
2220, 21addcli 9923 . . . . . . . . . 10 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℂ
2322negrebi 10234 . . . . . . . . 9 (-(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ ↔ (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ)
2418, 23mpbi 219 . . . . . . . 8 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ
2513, 24eqeltrri 2685 . . . . . . 7 ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)) ∈ ℝ
26 2re 10967 . . . . . . . 8 2 ∈ ℝ
27 hiidge0 27339 . . . . . . . . . . 11 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
287, 27ax-mp 5 . . . . . . . . . 10 0 ≤ (𝐴 ·ih 𝐴)
29 hiidrcl 27336 . . . . . . . . . . . 12 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
307, 29ax-mp 5 . . . . . . . . . . 11 (𝐴 ·ih 𝐴) ∈ ℝ
3130sqrtcli 13959 . . . . . . . . . 10 (0 ≤ (𝐴 ·ih 𝐴) → (√‘(𝐴 ·ih 𝐴)) ∈ ℝ)
3228, 31ax-mp 5 . . . . . . . . 9 (√‘(𝐴 ·ih 𝐴)) ∈ ℝ
33 hiidge0 27339 . . . . . . . . . . 11 (𝐵 ∈ ℋ → 0 ≤ (𝐵 ·ih 𝐵))
346, 33ax-mp 5 . . . . . . . . . 10 0 ≤ (𝐵 ·ih 𝐵)
35 hiidrcl 27336 . . . . . . . . . . . 12 (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ)
366, 35ax-mp 5 . . . . . . . . . . 11 (𝐵 ·ih 𝐵) ∈ ℝ
3736sqrtcli 13959 . . . . . . . . . 10 (0 ≤ (𝐵 ·ih 𝐵) → (√‘(𝐵 ·ih 𝐵)) ∈ ℝ)
3834, 37ax-mp 5 . . . . . . . . 9 (√‘(𝐵 ·ih 𝐵)) ∈ ℝ
3932, 38remulcli 9933 . . . . . . . 8 ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))) ∈ ℝ
4026, 39remulcli 9933 . . . . . . 7 (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))) ∈ ℝ
4130, 36readdcli 9932 . . . . . . 7 ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) ∈ ℝ
4225, 40, 41leadd2i 10463 . . . . . 6 (((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)) ≤ (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))) ↔ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))) ≤ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))))
4316, 42mpbi 219 . . . . 5 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))) ≤ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
447, 6, 7, 6normlem8 27358 . . . . . 6 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
4511, 8addcomi 10106 . . . . . . 7 ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))
4645oveq2i 6560 . . . . . 6 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)))
4744, 46eqtri 2632 . . . . 5 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)))
4832recni 9931 . . . . . . 7 (√‘(𝐴 ·ih 𝐴)) ∈ ℂ
4938recni 9931 . . . . . . 7 (√‘(𝐵 ·ih 𝐵)) ∈ ℂ
5048, 49binom2i 12836 . . . . . 6 (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) = ((((√‘(𝐴 ·ih 𝐴))↑2) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))) + ((√‘(𝐵 ·ih 𝐵))↑2))
5148sqcli 12806 . . . . . . 7 ((√‘(𝐴 ·ih 𝐴))↑2) ∈ ℂ
52 2cn 10968 . . . . . . . 8 2 ∈ ℂ
5348, 49mulcli 9924 . . . . . . . 8 ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))) ∈ ℂ
5452, 53mulcli 9924 . . . . . . 7 (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))) ∈ ℂ
5549sqcli 12806 . . . . . . 7 ((√‘(𝐵 ·ih 𝐵))↑2) ∈ ℂ
5651, 54, 55add32i 10138 . . . . . 6 ((((√‘(𝐴 ·ih 𝐴))↑2) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))) + ((√‘(𝐵 ·ih 𝐵))↑2)) = ((((√‘(𝐴 ·ih 𝐴))↑2) + ((√‘(𝐵 ·ih 𝐵))↑2)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
5730sqsqrti 13963 . . . . . . . . 9 (0 ≤ (𝐴 ·ih 𝐴) → ((√‘(𝐴 ·ih 𝐴))↑2) = (𝐴 ·ih 𝐴))
5828, 57ax-mp 5 . . . . . . . 8 ((√‘(𝐴 ·ih 𝐴))↑2) = (𝐴 ·ih 𝐴)
5936sqsqrti 13963 . . . . . . . . 9 (0 ≤ (𝐵 ·ih 𝐵) → ((√‘(𝐵 ·ih 𝐵))↑2) = (𝐵 ·ih 𝐵))
6034, 59ax-mp 5 . . . . . . . 8 ((√‘(𝐵 ·ih 𝐵))↑2) = (𝐵 ·ih 𝐵)
6158, 60oveq12i 6561 . . . . . . 7 (((√‘(𝐴 ·ih 𝐴))↑2) + ((√‘(𝐵 ·ih 𝐵))↑2)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))
6261oveq1i 6559 . . . . . 6 ((((√‘(𝐴 ·ih 𝐴))↑2) + ((√‘(𝐵 ·ih 𝐵))↑2)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
6350, 56, 623eqtri 2636 . . . . 5 (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
6443, 47, 633brtr4i 4613 . . . 4 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)
657, 6hvaddcli 27259 . . . . . 6 (𝐴 + 𝐵) ∈ ℋ
66 hiidge0 27339 . . . . . 6 ((𝐴 + 𝐵) ∈ ℋ → 0 ≤ ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)))
6765, 66ax-mp 5 . . . . 5 0 ≤ ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))
6832, 38readdcli 9932 . . . . . 6 ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))) ∈ ℝ
6968sqge0i 12813 . . . . 5 0 ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)
70 hiidrcl 27336 . . . . . . 7 ((𝐴 + 𝐵) ∈ ℋ → ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ∈ ℝ)
7165, 70ax-mp 5 . . . . . 6 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ∈ ℝ
7268resqcli 12811 . . . . . 6 (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) ∈ ℝ
7371, 72sqrtlei 13976 . . . . 5 ((0 ≤ ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ∧ 0 ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)) → (((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) ↔ (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2))))
7467, 69, 73mp2an 704 . . . 4 (((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) ↔ (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)))
7564, 74mpbi 219 . . 3 (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2))
7630sqrtge0i 13964 . . . . . 6 (0 ≤ (𝐴 ·ih 𝐴) → 0 ≤ (√‘(𝐴 ·ih 𝐴)))
7728, 76ax-mp 5 . . . . 5 0 ≤ (√‘(𝐴 ·ih 𝐴))
7836sqrtge0i 13964 . . . . . 6 (0 ≤ (𝐵 ·ih 𝐵) → 0 ≤ (√‘(𝐵 ·ih 𝐵)))
7934, 78ax-mp 5 . . . . 5 0 ≤ (√‘(𝐵 ·ih 𝐵))
8032, 38addge0i 10447 . . . . 5 ((0 ≤ (√‘(𝐴 ·ih 𝐴)) ∧ 0 ≤ (√‘(𝐵 ·ih 𝐵))) → 0 ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))))
8177, 79, 80mp2an 704 . . . 4 0 ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
8268sqrtsqi 13962 . . . 4 (0 ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))) → (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)) = ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))))
8381, 82ax-mp 5 . . 3 (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)) = ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
8475, 83breqtri 4608 . 2 (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
85 normval 27365 . . 3 ((𝐴 + 𝐵) ∈ ℋ → (norm‘(𝐴 + 𝐵)) = (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))))
8665, 85ax-mp 5 . 2 (norm‘(𝐴 + 𝐵)) = (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)))
87 normval 27365 . . . 4 (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))
887, 87ax-mp 5 . . 3 (norm𝐴) = (√‘(𝐴 ·ih 𝐴))
89 normval 27365 . . . 4 (𝐵 ∈ ℋ → (norm𝐵) = (√‘(𝐵 ·ih 𝐵)))
906, 89ax-mp 5 . . 3 (norm𝐵) = (√‘(𝐵 ·ih 𝐵))
9188, 90oveq12i 6561 . 2 ((norm𝐴) + (norm𝐵)) = ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
9284, 86, 913brtr4i 4613 1 (norm‘(𝐴 + 𝐵)) ≤ ((norm𝐴) + (norm𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  -cneg 10146  2c2 10947  cexp 12722  ccj 13684  csqrt 13821  chil 27160   + cva 27161   ·ih csp 27163  normcno 27164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-hfvadd 27241  ax-hv0cl 27244  ax-hfvmul 27246  ax-hvmulass 27248  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-hnorm 27209  df-hvsub 27212
This theorem is referenced by:  norm-ii  27379  norm3difi  27388
  Copyright terms: Public domain W3C validator