MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlnoubi Structured version   Visualization version   GIF version

Theorem nmlnoubi 27035
Description: An upper bound for the operator norm of a linear operator, using only the properties of nonzero arguments. (Contributed by NM, 1-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlnoubi.1 𝑋 = (BaseSet‘𝑈)
nmlnoubi.z 𝑍 = (0vec𝑈)
nmlnoubi.k 𝐾 = (normCV𝑈)
nmlnoubi.m 𝑀 = (normCV𝑊)
nmlnoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmlnoubi.7 𝐿 = (𝑈 LnOp 𝑊)
nmlnoubi.u 𝑈 ∈ NrmCVec
nmlnoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmlnoubi ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑁𝑇) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝑥,𝐿   𝑥,𝑀   𝑥,𝑇   𝑥,𝑈   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝑁(𝑥)   𝑍(𝑥)

Proof of Theorem nmlnoubi
StepHypRef Expression
1 fveq2 6103 . . . . . . . 8 (𝑥 = 𝑍 → (𝑇𝑥) = (𝑇𝑍))
21fveq2d 6107 . . . . . . 7 (𝑥 = 𝑍 → (𝑀‘(𝑇𝑥)) = (𝑀‘(𝑇𝑍)))
3 fveq2 6103 . . . . . . . 8 (𝑥 = 𝑍 → (𝐾𝑥) = (𝐾𝑍))
43oveq2d 6565 . . . . . . 7 (𝑥 = 𝑍 → (𝐴 · (𝐾𝑥)) = (𝐴 · (𝐾𝑍)))
52, 4breq12d 4596 . . . . . 6 (𝑥 = 𝑍 → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)) ↔ (𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍))))
6 id 22 . . . . . . . 8 ((𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))))
76imp 444 . . . . . . 7 (((𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) ∧ 𝑥𝑍) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
87adantll 746 . . . . . 6 ((((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) ∧ 𝑥𝑍) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
9 0le0 10987 . . . . . . . 8 0 ≤ 0
10 nmlnoubi.u . . . . . . . . . . . . 13 𝑈 ∈ NrmCVec
11 nmlnoubi.w . . . . . . . . . . . . 13 𝑊 ∈ NrmCVec
12 nmlnoubi.1 . . . . . . . . . . . . . 14 𝑋 = (BaseSet‘𝑈)
13 eqid 2610 . . . . . . . . . . . . . 14 (BaseSet‘𝑊) = (BaseSet‘𝑊)
14 nmlnoubi.z . . . . . . . . . . . . . 14 𝑍 = (0vec𝑈)
15 eqid 2610 . . . . . . . . . . . . . 14 (0vec𝑊) = (0vec𝑊)
16 nmlnoubi.7 . . . . . . . . . . . . . 14 𝐿 = (𝑈 LnOp 𝑊)
1712, 13, 14, 15, 16lno0 26995 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑍) = (0vec𝑊))
1810, 11, 17mp3an12 1406 . . . . . . . . . . . 12 (𝑇𝐿 → (𝑇𝑍) = (0vec𝑊))
1918fveq2d 6107 . . . . . . . . . . 11 (𝑇𝐿 → (𝑀‘(𝑇𝑍)) = (𝑀‘(0vec𝑊)))
20 nmlnoubi.m . . . . . . . . . . . . 13 𝑀 = (normCV𝑊)
2115, 20nvz0 26907 . . . . . . . . . . . 12 (𝑊 ∈ NrmCVec → (𝑀‘(0vec𝑊)) = 0)
2211, 21ax-mp 5 . . . . . . . . . . 11 (𝑀‘(0vec𝑊)) = 0
2319, 22syl6eq 2660 . . . . . . . . . 10 (𝑇𝐿 → (𝑀‘(𝑇𝑍)) = 0)
2423adantr 480 . . . . . . . . 9 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝑀‘(𝑇𝑍)) = 0)
25 nmlnoubi.k . . . . . . . . . . . . . 14 𝐾 = (normCV𝑈)
2614, 25nvz0 26907 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (𝐾𝑍) = 0)
2710, 26ax-mp 5 . . . . . . . . . . . 12 (𝐾𝑍) = 0
2827oveq2i 6560 . . . . . . . . . . 11 (𝐴 · (𝐾𝑍)) = (𝐴 · 0)
29 recn 9905 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3029mul01d 10114 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
3128, 30syl5eq 2656 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 · (𝐾𝑍)) = 0)
3231ad2antrl 760 . . . . . . . . 9 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · (𝐾𝑍)) = 0)
3324, 32breq12d 4596 . . . . . . . 8 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍)) ↔ 0 ≤ 0))
349, 33mpbiri 247 . . . . . . 7 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍)))
3534adantr 480 . . . . . 6 (((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍)))
365, 8, 35pm2.61ne 2867 . . . . 5 (((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
3736ex 449 . . . 4 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))))
3837ralimdv 2946 . . 3 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))))
39383impia 1253 . 2 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
4012, 13, 16lnof 26994 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
4110, 11, 40mp3an12 1406 . . 3 (𝑇𝐿𝑇:𝑋⟶(BaseSet‘𝑊))
42 nmlnoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
4312, 13, 25, 20, 42, 10, 11nmoub2i 27013 . . 3 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑁𝑇) ≤ 𝐴)
4441, 43syl3an1 1351 . 2 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑁𝑇) ≤ 𝐴)
4539, 44syld3an3 1363 1 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑁𝑇) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815   · cmul 9820  cle 9954  NrmCVeccnv 26823  BaseSetcba 26825  0veccn0v 26827  normCVcnmcv 26829   LnOp clno 26979   normOpOLD cnmoo 26980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-grpo 26731  df-gid 26732  df-ginv 26733  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839  df-lno 26983  df-nmoo 26984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator