MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspssp Structured version   Visualization version   GIF version

Theorem lspssp 18809
Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014.)
Hypotheses
Ref Expression
lspssp.s 𝑆 = (LSubSp‘𝑊)
lspssp.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspssp ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈) → (𝑁𝑇) ⊆ 𝑈)

Proof of Theorem lspssp
StepHypRef Expression
1 eqid 2610 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 lspssp.s . . . 4 𝑆 = (LSubSp‘𝑊)
31, 2lssss 18758 . . 3 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
4 lspssp.n . . . 4 𝑁 = (LSpan‘𝑊)
51, 4lspss 18805 . . 3 ((𝑊 ∈ LMod ∧ 𝑈 ⊆ (Base‘𝑊) ∧ 𝑇𝑈) → (𝑁𝑇) ⊆ (𝑁𝑈))
63, 5syl3an2 1352 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈) → (𝑁𝑇) ⊆ (𝑁𝑈))
72, 4lspid 18803 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
873adant3 1074 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈) → (𝑁𝑈) = 𝑈)
96, 8sseqtrd 3604 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈) → (𝑁𝑇) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  wss 3540  cfv 5804  Basecbs 15695  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-lmod 18688  df-lss 18754  df-lsp 18793
This theorem is referenced by:  lspsnss  18811  lspprss  18813  lsp0  18830  lsslsp  18836  lmhmlsp  18870  lspextmo  18877  lsmsp  18907  lsppratlem3  18970  lsppratlem4  18971  islbs3  18976  rspssp  19047  ocvlsp  19839  frlmsslsp  19954  lspsslco  42020
  Copyright terms: Public domain W3C validator