MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem3 Structured version   Visualization version   GIF version

Theorem lsppratlem3 18970
Description: Lemma for lspprat 18974. In the first case of lsppratlem1 18968, since 𝑥 ∉ (𝑁‘∅), also 𝑌 ∈ (𝑁‘{𝑥}), and since 𝑦 ∈ (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑥}) and 𝑦 ∉ (𝑁‘{𝑥}), we have 𝑋 ∈ (𝑁‘{𝑥, 𝑦}) as desired. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem1.o 0 = (0g𝑊)
lsppratlem1.x2 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
lsppratlem1.y2 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
lsppratlem3.x3 (𝜑𝑥 ∈ (𝑁‘{𝑌}))
Assertion
Ref Expression
lsppratlem3 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))

Proof of Theorem lsppratlem3
StepHypRef Expression
1 lspprat.w . . . 4 (𝜑𝑊 ∈ LVec)
2 lveclmod 18927 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
4 lspprat.y . . . . . . . 8 (𝜑𝑌𝑉)
54snssd 4281 . . . . . . 7 (𝜑 → {𝑌} ⊆ 𝑉)
6 lspprat.v . . . . . . . 8 𝑉 = (Base‘𝑊)
7 lspprat.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
86, 7lspssv 18804 . . . . . . 7 ((𝑊 ∈ LMod ∧ {𝑌} ⊆ 𝑉) → (𝑁‘{𝑌}) ⊆ 𝑉)
93, 5, 8syl2anc 691 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ⊆ 𝑉)
10 lsppratlem3.x3 . . . . . 6 (𝜑𝑥 ∈ (𝑁‘{𝑌}))
119, 10sseldd 3569 . . . . 5 (𝜑𝑥𝑉)
1211snssd 4281 . . . 4 (𝜑 → {𝑥} ⊆ 𝑉)
13 lspprat.x . . . 4 (𝜑𝑋𝑉)
14 lspprat.p . . . . . . . 8 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
1514pssssd 3666 . . . . . . 7 (𝜑𝑈 ⊆ (𝑁‘{𝑋, 𝑌}))
1613snssd 4281 . . . . . . . . . 10 (𝜑 → {𝑋} ⊆ 𝑉)
1712, 16unssd 3751 . . . . . . . . 9 (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ 𝑉)
18 lspprat.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
196, 18, 7lspcl 18797 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆)
203, 17, 19syl2anc 691 . . . . . . . 8 (𝜑 → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆)
21 df-pr 4128 . . . . . . . . 9 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
226, 7lspssid 18806 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
233, 17, 22syl2anc 691 . . . . . . . . . . 11 (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
2423unssbd 3753 . . . . . . . . . 10 (𝜑 → {𝑋} ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
25 ssun1 3738 . . . . . . . . . . . . . 14 {𝑥} ⊆ ({𝑥} ∪ {𝑋})
2625a1i 11 . . . . . . . . . . . . 13 (𝜑 → {𝑥} ⊆ ({𝑥} ∪ {𝑋}))
276, 7lspss 18805 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉 ∧ {𝑥} ⊆ ({𝑥} ∪ {𝑋})) → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
283, 17, 26, 27syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
29 0ss 3924 . . . . . . . . . . . . . . 15 ∅ ⊆ 𝑉
3029a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ∅ ⊆ 𝑉)
31 uncom 3719 . . . . . . . . . . . . . . . . . 18 (∅ ∪ {𝑌}) = ({𝑌} ∪ ∅)
32 un0 3919 . . . . . . . . . . . . . . . . . 18 ({𝑌} ∪ ∅) = {𝑌}
3331, 32eqtri 2632 . . . . . . . . . . . . . . . . 17 (∅ ∪ {𝑌}) = {𝑌}
3433fveq2i 6106 . . . . . . . . . . . . . . . 16 (𝑁‘(∅ ∪ {𝑌})) = (𝑁‘{𝑌})
3510, 34syl6eleqr 2699 . . . . . . . . . . . . . . 15 (𝜑𝑥 ∈ (𝑁‘(∅ ∪ {𝑌})))
36 lsppratlem1.x2 . . . . . . . . . . . . . . . . 17 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
3736eldifbd 3553 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑥 ∈ { 0 })
38 lsppratlem1.o . . . . . . . . . . . . . . . . . 18 0 = (0g𝑊)
3938, 7lsp0 18830 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LMod → (𝑁‘∅) = { 0 })
403, 39syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁‘∅) = { 0 })
4137, 40neleqtrrd 2710 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑥 ∈ (𝑁‘∅))
4235, 41eldifd 3551 . . . . . . . . . . . . . 14 (𝜑𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅)))
436, 18, 7lspsolv 18964 . . . . . . . . . . . . . 14 ((𝑊 ∈ LVec ∧ (∅ ⊆ 𝑉𝑌𝑉𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅)))) → 𝑌 ∈ (𝑁‘(∅ ∪ {𝑥})))
441, 30, 4, 42, 43syl13anc 1320 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝑁‘(∅ ∪ {𝑥})))
45 uncom 3719 . . . . . . . . . . . . . . 15 (∅ ∪ {𝑥}) = ({𝑥} ∪ ∅)
46 un0 3919 . . . . . . . . . . . . . . 15 ({𝑥} ∪ ∅) = {𝑥}
4745, 46eqtri 2632 . . . . . . . . . . . . . 14 (∅ ∪ {𝑥}) = {𝑥}
4847fveq2i 6106 . . . . . . . . . . . . 13 (𝑁‘(∅ ∪ {𝑥})) = (𝑁‘{𝑥})
4944, 48syl6eleq 2698 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (𝑁‘{𝑥}))
5028, 49sseldd 3569 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑋})))
5150snssd 4281 . . . . . . . . . 10 (𝜑 → {𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5224, 51unssd 3751 . . . . . . . . 9 (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5321, 52syl5eqss 3612 . . . . . . . 8 (𝜑 → {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5418, 7lspssp 18809 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
553, 20, 53, 54syl3anc 1318 . . . . . . 7 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5615, 55sstrd 3578 . . . . . 6 (𝜑𝑈 ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5756ssdifd 3708 . . . . 5 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))
58 lsppratlem1.y2 . . . . 5 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
5957, 58sseldd 3569 . . . 4 (𝜑𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))
606, 18, 7lspsolv 18964 . . . 4 ((𝑊 ∈ LVec ∧ ({𝑥} ⊆ 𝑉𝑋𝑉𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))) → 𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
611, 12, 13, 59, 60syl13anc 1320 . . 3 (𝜑𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
62 df-pr 4128 . . . 4 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
6362fveq2i 6106 . . 3 (𝑁‘{𝑥, 𝑦}) = (𝑁‘({𝑥} ∪ {𝑦}))
6461, 63syl6eleqr 2699 . 2 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
65 lspprat.u . . . . . . . . . 10 (𝜑𝑈𝑆)
666, 18lssss 18758 . . . . . . . . . 10 (𝑈𝑆𝑈𝑉)
6765, 66syl 17 . . . . . . . . 9 (𝜑𝑈𝑉)
6867ssdifssd 3710 . . . . . . . 8 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ 𝑉)
6968, 58sseldd 3569 . . . . . . 7 (𝜑𝑦𝑉)
7069snssd 4281 . . . . . 6 (𝜑 → {𝑦} ⊆ 𝑉)
7112, 70unssd 3751 . . . . 5 (𝜑 → ({𝑥} ∪ {𝑦}) ⊆ 𝑉)
7262, 71syl5eqss 3612 . . . 4 (𝜑 → {𝑥, 𝑦} ⊆ 𝑉)
73 snsspr1 4285 . . . . 5 {𝑥} ⊆ {𝑥, 𝑦}
7473a1i 11 . . . 4 (𝜑 → {𝑥} ⊆ {𝑥, 𝑦})
756, 7lspss 18805 . . . 4 ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉 ∧ {𝑥} ⊆ {𝑥, 𝑦}) → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦}))
763, 72, 74, 75syl3anc 1318 . . 3 (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦}))
7776, 49sseldd 3569 . 2 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
7864, 77jca 553 1 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cdif 3537  cun 3538  wss 3540  wpss 3541  c0 3874  {csn 4125  {cpr 4127  cfv 5804  Basecbs 15695  0gc0g 15923  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  LVecclvec 18923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924
This theorem is referenced by:  lsppratlem5  18972
  Copyright terms: Public domain W3C validator