MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgulm2 Structured version   Visualization version   GIF version

Theorem itgulm2 23967
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
itgulm2.z 𝑍 = (ℤ𝑀)
itgulm2.m (𝜑𝑀 ∈ ℤ)
itgulm2.c ((𝜑𝑘𝑍) → (𝑥𝑆𝐴) ∈ (𝑆cn→ℂ))
itgulm2.l ((𝜑𝑘𝑍) → (𝑥𝑆𝐴) ∈ 𝐿1)
itgulm2.u (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵))
itgulm2.s (𝜑 → (vol‘𝑆) ∈ ℝ)
Assertion
Ref Expression
itgulm2 (𝜑 → ((𝑥𝑆𝐵) ∈ 𝐿1 ∧ (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥))
Distinct variable groups:   𝑥,𝑘,𝜑   𝑆,𝑘,𝑥   𝑘,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem itgulm2
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm2.z . . 3 𝑍 = (ℤ𝑀)
2 itgulm2.m . . 3 (𝜑𝑀 ∈ ℤ)
3 itgulm2.l . . . 4 ((𝜑𝑘𝑍) → (𝑥𝑆𝐴) ∈ 𝐿1)
4 eqid 2610 . . . 4 (𝑘𝑍 ↦ (𝑥𝑆𝐴)) = (𝑘𝑍 ↦ (𝑥𝑆𝐴))
53, 4fmptd 6292 . . 3 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴)):𝑍⟶𝐿1)
6 itgulm2.u . . 3 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵))
7 itgulm2.s . . 3 (𝜑 → (vol‘𝑆) ∈ ℝ)
81, 2, 5, 6, 7iblulm 23965 . 2 (𝜑 → (𝑥𝑆𝐵) ∈ 𝐿1)
91, 2, 5, 6, 7itgulm 23966 . . 3 (𝜑 → (𝑛𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧) ⇝ ∫𝑆((𝑥𝑆𝐵)‘𝑧) d𝑧)
10 nfcv 2751 . . . . . 6 𝑘𝑆
11 nffvmpt1 6111 . . . . . . 7 𝑘((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)
12 nfcv 2751 . . . . . . 7 𝑘𝑧
1311, 12nffv 6110 . . . . . 6 𝑘(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧)
1410, 13nfitg 23347 . . . . 5 𝑘𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧
15 nfcv 2751 . . . . 5 𝑛𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥
16 fveq2 6103 . . . . . . 7 (𝑧 = 𝑥 → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) = (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥))
17 nfcv 2751 . . . . . . . . . 10 𝑥𝑍
18 nfmpt1 4675 . . . . . . . . . 10 𝑥(𝑥𝑆𝐴)
1917, 18nfmpt 4674 . . . . . . . . 9 𝑥(𝑘𝑍 ↦ (𝑥𝑆𝐴))
20 nfcv 2751 . . . . . . . . 9 𝑥𝑛
2119, 20nffv 6110 . . . . . . . 8 𝑥((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)
22 nfcv 2751 . . . . . . . 8 𝑥𝑧
2321, 22nffv 6110 . . . . . . 7 𝑥(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧)
24 nfcv 2751 . . . . . . 7 𝑧(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥)
2516, 23, 24cbvitg 23348 . . . . . 6 𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧 = ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) d𝑥
26 fveq2 6103 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛) = ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘))
2726fveq1d 6105 . . . . . . . 8 (𝑛 = 𝑘 → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) = (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥))
2827adantr 480 . . . . . . 7 ((𝑛 = 𝑘𝑥𝑆) → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) = (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥))
2928itgeq2dv 23354 . . . . . 6 (𝑛 = 𝑘 → ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) d𝑥 = ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥)
3025, 29syl5eq 2656 . . . . 5 (𝑛 = 𝑘 → ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧 = ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥)
3114, 15, 30cbvmpt 4677 . . . 4 (𝑛𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧) = (𝑘𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥)
32 simplr 788 . . . . . . . . 9 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → 𝑘𝑍)
33 ulmscl 23937 . . . . . . . . . . 11 ((𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵) → 𝑆 ∈ V)
34 mptexg 6389 . . . . . . . . . . 11 (𝑆 ∈ V → (𝑥𝑆𝐴) ∈ V)
356, 33, 343syl 18 . . . . . . . . . 10 (𝜑 → (𝑥𝑆𝐴) ∈ V)
3635ad2antrr 758 . . . . . . . . 9 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (𝑥𝑆𝐴) ∈ V)
374fvmpt2 6200 . . . . . . . . 9 ((𝑘𝑍 ∧ (𝑥𝑆𝐴) ∈ V) → ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘) = (𝑥𝑆𝐴))
3832, 36, 37syl2anc 691 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘) = (𝑥𝑆𝐴))
3938fveq1d 6105 . . . . . . 7 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) = ((𝑥𝑆𝐴)‘𝑥))
40 simpr 476 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → 𝑥𝑆)
4135ralrimivw 2950 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘𝑍 (𝑥𝑆𝐴) ∈ V)
424fnmpt 5933 . . . . . . . . . . . . . . 15 (∀𝑘𝑍 (𝑥𝑆𝐴) ∈ V → (𝑘𝑍 ↦ (𝑥𝑆𝐴)) Fn 𝑍)
4341, 42syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴)) Fn 𝑍)
44 ulmf2 23942 . . . . . . . . . . . . . 14 (((𝑘𝑍 ↦ (𝑥𝑆𝐴)) Fn 𝑍 ∧ (𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵)) → (𝑘𝑍 ↦ (𝑥𝑆𝐴)):𝑍⟶(ℂ ↑𝑚 𝑆))
4543, 6, 44syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴)):𝑍⟶(ℂ ↑𝑚 𝑆))
464fmpt 6289 . . . . . . . . . . . . 13 (∀𝑘𝑍 (𝑥𝑆𝐴) ∈ (ℂ ↑𝑚 𝑆) ↔ (𝑘𝑍 ↦ (𝑥𝑆𝐴)):𝑍⟶(ℂ ↑𝑚 𝑆))
4745, 46sylibr 223 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝑍 (𝑥𝑆𝐴) ∈ (ℂ ↑𝑚 𝑆))
4847r19.21bi 2916 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝑥𝑆𝐴) ∈ (ℂ ↑𝑚 𝑆))
49 elmapi 7765 . . . . . . . . . . 11 ((𝑥𝑆𝐴) ∈ (ℂ ↑𝑚 𝑆) → (𝑥𝑆𝐴):𝑆⟶ℂ)
5048, 49syl 17 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝑥𝑆𝐴):𝑆⟶ℂ)
51 eqid 2610 . . . . . . . . . . 11 (𝑥𝑆𝐴) = (𝑥𝑆𝐴)
5251fmpt 6289 . . . . . . . . . 10 (∀𝑥𝑆 𝐴 ∈ ℂ ↔ (𝑥𝑆𝐴):𝑆⟶ℂ)
5350, 52sylibr 223 . . . . . . . . 9 ((𝜑𝑘𝑍) → ∀𝑥𝑆 𝐴 ∈ ℂ)
5453r19.21bi 2916 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → 𝐴 ∈ ℂ)
5551fvmpt2 6200 . . . . . . . 8 ((𝑥𝑆𝐴 ∈ ℂ) → ((𝑥𝑆𝐴)‘𝑥) = 𝐴)
5640, 54, 55syl2anc 691 . . . . . . 7 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((𝑥𝑆𝐴)‘𝑥) = 𝐴)
5739, 56eqtrd 2644 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) = 𝐴)
5857itgeq2dv 23354 . . . . 5 ((𝜑𝑘𝑍) → ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥 = ∫𝑆𝐴 d𝑥)
5958mpteq2dva 4672 . . . 4 (𝜑 → (𝑘𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥) = (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥))
6031, 59syl5eq 2656 . . 3 (𝜑 → (𝑛𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧) = (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥))
61 fveq2 6103 . . . . 5 (𝑧 = 𝑥 → ((𝑥𝑆𝐵)‘𝑧) = ((𝑥𝑆𝐵)‘𝑥))
62 nffvmpt1 6111 . . . . 5 𝑥((𝑥𝑆𝐵)‘𝑧)
63 nfcv 2751 . . . . 5 𝑧((𝑥𝑆𝐵)‘𝑥)
6461, 62, 63cbvitg 23348 . . . 4 𝑆((𝑥𝑆𝐵)‘𝑧) d𝑧 = ∫𝑆((𝑥𝑆𝐵)‘𝑥) d𝑥
65 simpr 476 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝑆)
66 ulmcl 23939 . . . . . . . . 9 ((𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵) → (𝑥𝑆𝐵):𝑆⟶ℂ)
676, 66syl 17 . . . . . . . 8 (𝜑 → (𝑥𝑆𝐵):𝑆⟶ℂ)
68 eqid 2610 . . . . . . . . 9 (𝑥𝑆𝐵) = (𝑥𝑆𝐵)
6968fmpt 6289 . . . . . . . 8 (∀𝑥𝑆 𝐵 ∈ ℂ ↔ (𝑥𝑆𝐵):𝑆⟶ℂ)
7067, 69sylibr 223 . . . . . . 7 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℂ)
7170r19.21bi 2916 . . . . . 6 ((𝜑𝑥𝑆) → 𝐵 ∈ ℂ)
7268fvmpt2 6200 . . . . . 6 ((𝑥𝑆𝐵 ∈ ℂ) → ((𝑥𝑆𝐵)‘𝑥) = 𝐵)
7365, 71, 72syl2anc 691 . . . . 5 ((𝜑𝑥𝑆) → ((𝑥𝑆𝐵)‘𝑥) = 𝐵)
7473itgeq2dv 23354 . . . 4 (𝜑 → ∫𝑆((𝑥𝑆𝐵)‘𝑥) d𝑥 = ∫𝑆𝐵 d𝑥)
7564, 74syl5eq 2656 . . 3 (𝜑 → ∫𝑆((𝑥𝑆𝐵)‘𝑧) d𝑧 = ∫𝑆𝐵 d𝑥)
769, 60, 753brtr3d 4614 . 2 (𝜑 → (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥)
778, 76jca 553 1 (𝜑 → ((𝑥𝑆𝐵) ∈ 𝐿1 ∧ (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173   class class class wbr 4583  cmpt 4643   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cc 9813  cr 9814  cz 11254  cuz 11563  cli 14063  cnccncf 22487  volcvol 23039  𝐿1cibl 23192  citg 23193  𝑢culm 23934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-ulm 23935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator