MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin5-2 Structured version   Visualization version   GIF version

Theorem isfin5-2 9096
Description: Alternate definition of V-finite which emphasizes the idempotent behavior of V-infinite sets. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin5-2 (𝐴𝑉 → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 +𝑐 𝐴))))

Proof of Theorem isfin5-2
StepHypRef Expression
1 nne 2786 . . . . 5 𝐴 ≠ ∅ ↔ 𝐴 = ∅)
21bicomi 213 . . . 4 (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅)
32a1i 11 . . 3 (𝐴𝑉 → (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅))
4 cdadom3 8893 . . . . 5 ((𝐴𝑉𝐴𝑉) → 𝐴 ≼ (𝐴 +𝑐 𝐴))
54anidms 675 . . . 4 (𝐴𝑉𝐴 ≼ (𝐴 +𝑐 𝐴))
6 brsdom 7864 . . . . 5 (𝐴 ≺ (𝐴 +𝑐 𝐴) ↔ (𝐴 ≼ (𝐴 +𝑐 𝐴) ∧ ¬ 𝐴 ≈ (𝐴 +𝑐 𝐴)))
76baib 942 . . . 4 (𝐴 ≼ (𝐴 +𝑐 𝐴) → (𝐴 ≺ (𝐴 +𝑐 𝐴) ↔ ¬ 𝐴 ≈ (𝐴 +𝑐 𝐴)))
85, 7syl 17 . . 3 (𝐴𝑉 → (𝐴 ≺ (𝐴 +𝑐 𝐴) ↔ ¬ 𝐴 ≈ (𝐴 +𝑐 𝐴)))
93, 8orbi12d 742 . 2 (𝐴𝑉 → ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ (𝐴 +𝑐 𝐴))))
10 isfin5 9004 . 2 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)))
11 ianor 508 . 2 (¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 +𝑐 𝐴)) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ (𝐴 +𝑐 𝐴)))
129, 10, 113bitr4g 302 1 (𝐴𝑉 → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 +𝑐 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  c0 3874   class class class wbr 4583  (class class class)co 6549  cen 7838  cdom 7839  csdm 7840   +𝑐 ccda 8872  FinVcfin5 8987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-cda 8873  df-fin5 8994
This theorem is referenced by:  fin45  9097
  Copyright terms: Public domain W3C validator