MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsdom Structured version   Visualization version   GIF version

Theorem brsdom 7864
Description: Strict dominance relation, meaning "𝐵 is strictly greater in size than 𝐴." Definition of [Mendelson] p. 255. (Contributed by NM, 25-Jun-1998.)
Assertion
Ref Expression
brsdom (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))

Proof of Theorem brsdom
StepHypRef Expression
1 df-sdom 7844 . . 3 ≺ = ( ≼ ∖ ≈ )
21eleq2i 2680 . 2 (⟨𝐴, 𝐵⟩ ∈ ≺ ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≈ ))
3 df-br 4584 . 2 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≺ )
4 df-br 4584 . . . 4 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≼ )
5 df-br 4584 . . . . 5 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≈ )
65notbii 309 . . . 4 𝐴𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ≈ )
74, 6anbi12i 729 . . 3 ((𝐴𝐵 ∧ ¬ 𝐴𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ ≼ ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ≈ ))
8 eldif 3550 . . 3 (⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≈ ) ↔ (⟨𝐴, 𝐵⟩ ∈ ≼ ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ≈ ))
97, 8bitr4i 266 . 2 ((𝐴𝐵 ∧ ¬ 𝐴𝐵) ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≈ ))
102, 3, 93bitr4i 291 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wa 383  wcel 1977  cdif 3537  cop 4131   class class class wbr 4583  cen 7838  cdom 7839  csdm 7840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-br 4584  df-sdom 7844
This theorem is referenced by:  sdomdom  7869  sdomnen  7870  0sdomg  7974  sdomdomtr  7978  domsdomtr  7980  domtriord  7991  canth2  7998  php2  8030  php3  8031  nnsdomo  8040  nnsdomg  8104  card2inf  8343  cardsdomelir  8682  cardsdom2  8697  fidomtri2  8703  cardmin2  8707  alephordi  8780  alephord  8781  isfin4-3  9020  isfin5-2  9096  canthnum  9350  canthwe  9352  canthp1  9355  gchcdaidm  9369  gchxpidm  9370  gchhar  9380  axgroth6  9529  hashsdom  13031  ruc  14811
  Copyright terms: Public domain W3C validator