MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiin Structured version   Visualization version   GIF version

Theorem fiin 8211
Description: The elements of (fi‘𝐶) are closed under finite intersection. (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiin ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐴𝐵) ∈ (fi‘𝐶))

Proof of Theorem fiin
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6131 . . . . . 6 (𝐴 ∈ (fi‘𝐶) → 𝐶 ∈ V)
2 elfi 8202 . . . . . 6 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐶 ∈ V) → (𝐴 ∈ (fi‘𝐶) ↔ ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥))
31, 2mpdan 699 . . . . 5 (𝐴 ∈ (fi‘𝐶) → (𝐴 ∈ (fi‘𝐶) ↔ ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥))
43ibi 255 . . . 4 (𝐴 ∈ (fi‘𝐶) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥)
54adantr 480 . . 3 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥)
6 simpr 476 . . . 4 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → 𝐵 ∈ (fi‘𝐶))
7 elfi 8202 . . . . . 6 ((𝐵 ∈ (fi‘𝐶) ∧ 𝐶 ∈ V) → (𝐵 ∈ (fi‘𝐶) ↔ ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦))
87ancoms 468 . . . . 5 ((𝐶 ∈ V ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐵 ∈ (fi‘𝐶) ↔ ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦))
91, 8sylan 487 . . . 4 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐵 ∈ (fi‘𝐶) ↔ ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦))
106, 9mpbid 221 . . 3 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦)
11 elin 3758 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝐶𝑥 ∈ Fin))
12 elin 3758 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐶𝑦 ∈ Fin))
13 elpwi 4117 . . . . . . . . . . . . . 14 (𝑥 ∈ 𝒫 𝐶𝑥𝐶)
14 elpwi 4117 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝒫 𝐶𝑦𝐶)
1513, 14anim12i 588 . . . . . . . . . . . . 13 ((𝑥 ∈ 𝒫 𝐶𝑦 ∈ 𝒫 𝐶) → (𝑥𝐶𝑦𝐶))
16 unss 3749 . . . . . . . . . . . . 13 ((𝑥𝐶𝑦𝐶) ↔ (𝑥𝑦) ⊆ 𝐶)
1715, 16sylib 207 . . . . . . . . . . . 12 ((𝑥 ∈ 𝒫 𝐶𝑦 ∈ 𝒫 𝐶) → (𝑥𝑦) ⊆ 𝐶)
18 vex 3176 . . . . . . . . . . . . . 14 𝑥 ∈ V
19 vex 3176 . . . . . . . . . . . . . 14 𝑦 ∈ V
2018, 19unex 6854 . . . . . . . . . . . . 13 (𝑥𝑦) ∈ V
2120elpw 4114 . . . . . . . . . . . 12 ((𝑥𝑦) ∈ 𝒫 𝐶 ↔ (𝑥𝑦) ⊆ 𝐶)
2217, 21sylibr 223 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝐶𝑦 ∈ 𝒫 𝐶) → (𝑥𝑦) ∈ 𝒫 𝐶)
23 unfi 8112 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
2422, 23anim12i 588 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 𝐶𝑦 ∈ 𝒫 𝐶) ∧ (𝑥 ∈ Fin ∧ 𝑦 ∈ Fin)) → ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
2524an4s 865 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝐶𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐶𝑦 ∈ Fin)) → ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
2611, 12, 25syl2anb 495 . . . . . . . 8 ((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
27 elin 3758 . . . . . . . 8 ((𝑥𝑦) ∈ (𝒫 𝐶 ∩ Fin) ↔ ((𝑥𝑦) ∈ 𝒫 𝐶 ∧ (𝑥𝑦) ∈ Fin))
2826, 27sylibr 223 . . . . . . 7 ((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐶 ∩ Fin)) → (𝑥𝑦) ∈ (𝒫 𝐶 ∩ Fin))
29 ineq12 3771 . . . . . . . 8 ((𝐴 = 𝑥𝐵 = 𝑦) → (𝐴𝐵) = ( 𝑥 𝑦))
30 intun 4444 . . . . . . . 8 (𝑥𝑦) = ( 𝑥 𝑦)
3129, 30syl6eqr 2662 . . . . . . 7 ((𝐴 = 𝑥𝐵 = 𝑦) → (𝐴𝐵) = (𝑥𝑦))
32 inteq 4413 . . . . . . . . 9 (𝑧 = (𝑥𝑦) → 𝑧 = (𝑥𝑦))
3332eqeq2d 2620 . . . . . . . 8 (𝑧 = (𝑥𝑦) → ((𝐴𝐵) = 𝑧 ↔ (𝐴𝐵) = (𝑥𝑦)))
3433rspcev 3282 . . . . . . 7 (((𝑥𝑦) ∈ (𝒫 𝐶 ∩ Fin) ∧ (𝐴𝐵) = (𝑥𝑦)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
3528, 31, 34syl2an 493 . . . . . 6 (((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐶 ∩ Fin)) ∧ (𝐴 = 𝑥𝐵 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
3635an4s 865 . . . . 5 (((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐴 = 𝑥) ∧ (𝑦 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐵 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
3736rexlimdvaa 3014 . . . 4 ((𝑥 ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐴 = 𝑥) → (∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
3837rexlimiva 3010 . . 3 (∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = 𝑥 → (∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)𝐵 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
395, 10, 38sylc 63 . 2 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧)
40 inex1g 4729 . . . 4 (𝐴 ∈ (fi‘𝐶) → (𝐴𝐵) ∈ V)
41 elfi 8202 . . . 4 (((𝐴𝐵) ∈ V ∧ 𝐶 ∈ V) → ((𝐴𝐵) ∈ (fi‘𝐶) ↔ ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
4240, 1, 41syl2anc 691 . . 3 (𝐴 ∈ (fi‘𝐶) → ((𝐴𝐵) ∈ (fi‘𝐶) ↔ ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
4342adantr 480 . 2 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → ((𝐴𝐵) ∈ (fi‘𝐶) ↔ ∃𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝐴𝐵) = 𝑧))
4439, 43mpbird 246 1 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐴𝐵) ∈ (fi‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  cun 3538  cin 3539  wss 3540  𝒫 cpw 4108   cint 4410  cfv 5804  Fincfn 7841  ficfi 8199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-fi 8200
This theorem is referenced by:  dffi2  8212  inficl  8214  elfiun  8219  dffi3  8220  fibas  20592  ordtbas2  20805  fsubbas  21481
  Copyright terms: Public domain W3C validator