Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerper Structured version   Visualization version   GIF version

Theorem dirkerper 38989
Description: the Dirichlet Kernel has period . (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkerper.1 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkerper.2 𝑇 = (2 · π)
Assertion
Ref Expression
dirkerper ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = ((𝐷𝑁)‘𝑥))
Distinct variable groups:   𝑦,𝑁   𝑦,𝑛
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑛)   𝑇(𝑥,𝑦,𝑛)   𝑁(𝑥,𝑛)

Proof of Theorem dirkerper
StepHypRef Expression
1 dirkerper.2 . . . . . . . . . . . . 13 𝑇 = (2 · π)
21eqcomi 2619 . . . . . . . . . . . 12 (2 · π) = 𝑇
32oveq2i 6560 . . . . . . . . . . 11 (1 · (2 · π)) = (1 · 𝑇)
4 2re 10967 . . . . . . . . . . . . . . 15 2 ∈ ℝ
5 pire 24014 . . . . . . . . . . . . . . 15 π ∈ ℝ
64, 5remulcli 9933 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ
71, 6eqeltri 2684 . . . . . . . . . . . . 13 𝑇 ∈ ℝ
87recni 9931 . . . . . . . . . . . 12 𝑇 ∈ ℂ
98mulid2i 9922 . . . . . . . . . . 11 (1 · 𝑇) = 𝑇
103, 9eqtri 2632 . . . . . . . . . 10 (1 · (2 · π)) = 𝑇
1110oveq2i 6560 . . . . . . . . 9 (𝑥 + (1 · (2 · π))) = (𝑥 + 𝑇)
1211eqcomi 2619 . . . . . . . 8 (𝑥 + 𝑇) = (𝑥 + (1 · (2 · π)))
1312oveq1i 6559 . . . . . . 7 ((𝑥 + 𝑇) mod (2 · π)) = ((𝑥 + (1 · (2 · π))) mod (2 · π))
1413a1i 11 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) = ((𝑥 + (1 · (2 · π))) mod (2 · π)))
15 id 22 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
1615ad2antlr 759 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → 𝑥 ∈ ℝ)
17 2rp 11713 . . . . . . . . 9 2 ∈ ℝ+
18 pirp 24017 . . . . . . . . 9 π ∈ ℝ+
19 rpmulcl 11731 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
2017, 18, 19mp2an 704 . . . . . . . 8 (2 · π) ∈ ℝ+
2120a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → (2 · π) ∈ ℝ+)
22 1z 11284 . . . . . . . 8 1 ∈ ℤ
2322a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → 1 ∈ ℤ)
24 modcyc 12567 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (2 · π) ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝑥 + (1 · (2 · π))) mod (2 · π)) = (𝑥 mod (2 · π)))
2516, 21, 23, 24syl3anc 1318 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → ((𝑥 + (1 · (2 · π))) mod (2 · π)) = (𝑥 mod (2 · π)))
26 simpr 476 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → (𝑥 mod (2 · π)) = 0)
2714, 25, 263eqtrd 2648 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) = 0)
2827iftrued 4044 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
29 iftrue 4042 . . . . 5 ((𝑥 mod (2 · π)) = 0 → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
3029adantl 481 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
3128, 30eqtr4d 2647 . . 3 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
32 iffalse 4045 . . . . 5 (¬ (𝑥 mod (2 · π)) = 0 → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))
3332adantl 481 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))
34 nncn 10905 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
35 halfcn 11124 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
3635a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / 2) ∈ ℂ)
3734, 36addcld 9938 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + (1 / 2)) ∈ ℂ)
3837adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑁 + (1 / 2)) ∈ ℂ)
39 recn 9905 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4039adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
4138, 40mulcld 9939 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝑁 + (1 / 2)) · 𝑥) ∈ ℂ)
4241sincld 14699 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · 𝑥)) ∈ ℂ)
4342adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (sin‘((𝑁 + (1 / 2)) · 𝑥)) ∈ ℂ)
446recni 9931 . . . . . . . 8 (2 · π) ∈ ℂ
4544a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (2 · π) ∈ ℂ)
4640halfcld 11154 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑥 / 2) ∈ ℂ)
4746sincld 14699 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘(𝑥 / 2)) ∈ ℂ)
4845, 47mulcld 9939 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((2 · π) · (sin‘(𝑥 / 2))) ∈ ℂ)
4948adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑥 / 2))) ∈ ℂ)
50 dirkerdenne0 38986 . . . . . 6 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑥 / 2))) ≠ 0)
5150adantll 746 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑥 / 2))) ≠ 0)
5243, 49, 51div2negd 10695 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))
5313a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 + 𝑇) mod (2 · π)) = ((𝑥 + (1 · (2 · π))) mod (2 · π)))
5420, 22, 24mp3an23 1408 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 + (1 · (2 · π))) mod (2 · π)) = (𝑥 mod (2 · π)))
5553, 54eqtrd 2644 . . . . . . . . . 10 (𝑥 ∈ ℝ → ((𝑥 + 𝑇) mod (2 · π)) = (𝑥 mod (2 · π)))
5655adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) = (𝑥 mod (2 · π)))
57 simpr 476 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ¬ (𝑥 mod (2 · π)) = 0)
5857neqned 2789 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → (𝑥 mod (2 · π)) ≠ 0)
5956, 58eqnetrd 2849 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) ≠ 0)
6059neneqd 2787 . . . . . . 7 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ¬ ((𝑥 + 𝑇) mod (2 · π)) = 0)
61 iffalse 4045 . . . . . . . 8 (¬ ((𝑥 + 𝑇) mod (2 · π)) = 0 → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2)))))
621oveq2i 6560 . . . . . . . . . . 11 (𝑥 + 𝑇) = (𝑥 + (2 · π))
6362oveq2i 6560 . . . . . . . . . 10 ((𝑁 + (1 / 2)) · (𝑥 + 𝑇)) = ((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))
6463fveq2i 6106 . . . . . . . . 9 (sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) = (sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π))))
6562oveq1i 6559 . . . . . . . . . . 11 ((𝑥 + 𝑇) / 2) = ((𝑥 + (2 · π)) / 2)
6665fveq2i 6106 . . . . . . . . . 10 (sin‘((𝑥 + 𝑇) / 2)) = (sin‘((𝑥 + (2 · π)) / 2))
6766oveq2i 6560 . . . . . . . . 9 ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))) = ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))
6864, 67oveq12i 6561 . . . . . . . 8 ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2))))
6961, 68syl6eq 2660 . . . . . . 7 (¬ ((𝑥 + 𝑇) mod (2 · π)) = 0 → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))))
7060, 69syl 17 . . . . . 6 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))))
7170adantll 746 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))))
7244a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2 · π) ∈ ℂ)
7334, 36, 72adddird 9944 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + (1 / 2)) · (2 · π)) = ((𝑁 · (2 · π)) + ((1 / 2) · (2 · π))))
74 ax-1cn 9873 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
75 2cnne0 11119 . . . . . . . . . . . . . . . 16 (2 ∈ ℂ ∧ 2 ≠ 0)
76 2cn 10968 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
77 picn 24015 . . . . . . . . . . . . . . . . 17 π ∈ ℂ
7876, 77mulcli 9924 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℂ
79 div32 10584 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 · π) ∈ ℂ) → ((1 / 2) · (2 · π)) = (1 · ((2 · π) / 2)))
8074, 75, 78, 79mp3an 1416 . . . . . . . . . . . . . . 15 ((1 / 2) · (2 · π)) = (1 · ((2 · π) / 2))
81 2ne0 10990 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
8278, 76, 81divcli 10646 . . . . . . . . . . . . . . . . 17 ((2 · π) / 2) ∈ ℂ
8382mulid2i 9922 . . . . . . . . . . . . . . . 16 (1 · ((2 · π) / 2)) = ((2 · π) / 2)
8477, 76, 81divcan3i 10650 . . . . . . . . . . . . . . . 16 ((2 · π) / 2) = π
8583, 84eqtri 2632 . . . . . . . . . . . . . . 15 (1 · ((2 · π) / 2)) = π
8680, 85eqtri 2632 . . . . . . . . . . . . . 14 ((1 / 2) · (2 · π)) = π
8786oveq2i 6560 . . . . . . . . . . . . 13 ((𝑁 · (2 · π)) + ((1 / 2) · (2 · π))) = ((𝑁 · (2 · π)) + π)
8873, 87syl6eq 2660 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁 + (1 / 2)) · (2 · π)) = ((𝑁 · (2 · π)) + π))
8988oveq2d 6565 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 + (1 / 2)) · (2 · π))) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 · (2 · π)) + π)))
9089adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 + (1 / 2)) · (2 · π))) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 · (2 · π)) + π)))
9138, 40, 45adddid 9943 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝑁 + (1 / 2)) · (𝑥 + (2 · π))) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 + (1 / 2)) · (2 · π))))
9234, 72mulcld 9939 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 · (2 · π)) ∈ ℂ)
9392adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑁 · (2 · π)) ∈ ℂ)
9477a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → π ∈ ℂ)
9541, 93, 94addassd 9941 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 · (2 · π)) + π)))
9690, 91, 953eqtr4d 2654 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝑁 + (1 / 2)) · (𝑥 + (2 · π))) = ((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π))
9796fveq2d 6107 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) = (sin‘((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π)))
9841, 93addcld 9938 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) ∈ ℂ)
99 sinppi 24045 . . . . . . . . 9 ((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) ∈ ℂ → (sin‘((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π)) = -(sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))))
10098, 99syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π)) = -(sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))))
101 simpl 472 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → 𝑁 ∈ ℕ)
102101nnzd 11357 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → 𝑁 ∈ ℤ)
103 sinper 24037 . . . . . . . . . 10 ((((𝑁 + (1 / 2)) · 𝑥) ∈ ℂ ∧ 𝑁 ∈ ℤ) → (sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
10441, 102, 103syl2anc 691 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
105104negeqd 10154 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → -(sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))) = -(sin‘((𝑁 + (1 / 2)) · 𝑥)))
10697, 100, 1053eqtrd 2648 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) = -(sin‘((𝑁 + (1 / 2)) · 𝑥)))
10744a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (2 · π) ∈ ℂ)
10876a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 2 ∈ ℂ)
10981a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 2 ≠ 0)
11039, 107, 108, 109divdird 10718 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑥 + (2 · π)) / 2) = ((𝑥 / 2) + ((2 · π) / 2)))
11184a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((2 · π) / 2) = π)
112111oveq2d 6565 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑥 / 2) + ((2 · π) / 2)) = ((𝑥 / 2) + π))
113110, 112eqtrd 2644 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 + (2 · π)) / 2) = ((𝑥 / 2) + π))
114113fveq2d 6107 . . . . . . . . . 10 (𝑥 ∈ ℝ → (sin‘((𝑥 + (2 · π)) / 2)) = (sin‘((𝑥 / 2) + π)))
11539halfcld 11154 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 / 2) ∈ ℂ)
116 sinppi 24045 . . . . . . . . . . 11 ((𝑥 / 2) ∈ ℂ → (sin‘((𝑥 / 2) + π)) = -(sin‘(𝑥 / 2)))
117115, 116syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ → (sin‘((𝑥 / 2) + π)) = -(sin‘(𝑥 / 2)))
118114, 117eqtrd 2644 . . . . . . . . 9 (𝑥 ∈ ℝ → (sin‘((𝑥 + (2 · π)) / 2)) = -(sin‘(𝑥 / 2)))
119118oveq2d 6565 . . . . . . . 8 (𝑥 ∈ ℝ → ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2))) = ((2 · π) · -(sin‘(𝑥 / 2))))
120119adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2))) = ((2 · π) · -(sin‘(𝑥 / 2))))
121106, 120oveq12d 6567 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))))
122121adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))))
123115sincld 14699 . . . . . . . 8 (𝑥 ∈ ℝ → (sin‘(𝑥 / 2)) ∈ ℂ)
124107, 123mulneg2d 10363 . . . . . . 7 (𝑥 ∈ ℝ → ((2 · π) · -(sin‘(𝑥 / 2))) = -((2 · π) · (sin‘(𝑥 / 2))))
125124oveq2d 6565 . . . . . 6 (𝑥 ∈ ℝ → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))))
126125ad2antlr 759 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))))
12771, 122, 1263eqtrrd 2649 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))) = if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))))
12833, 52, 1273eqtr2rd 2651 . . 3 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
12931, 128pm2.61dan 828 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
1307a1i 11 . . . 4 (𝑥 ∈ ℝ → 𝑇 ∈ ℝ)
13115, 130readdcld 9948 . . 3 (𝑥 ∈ ℝ → (𝑥 + 𝑇) ∈ ℝ)
132 dirkerper.1 . . . 4 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
133132dirkerval2 38987 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 + 𝑇) ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))))
134131, 133sylan2 490 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))))
135132dirkerval2 38987 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘𝑥) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
136129, 134, 1353eqtr4d 2654 1 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = ((𝐷𝑁)‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  ifcif 4036  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  cz 11254  +crp 11708   mod cmo 12530  sincsin 14633  πcpi 14636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by:  fourierdlem111  39110
  Copyright terms: Public domain W3C validator