MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfwe2 Structured version   Visualization version   GIF version

Theorem dfwe2 6873
Description: Alternate definition of well-ordering. Definition 6.24(2) of [TakeutiZaring] p. 30. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
dfwe2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝐴,𝑦

Proof of Theorem dfwe2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-we 4999 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
2 df-so 4960 . . . 4 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
3 simpr 476 . . . . 5 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
4 ax-1 6 . . . . . . . . . . . . . . 15 (𝑥𝑅𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
54a1i 11 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
6 fr2nr 5016 . . . . . . . . . . . . . . . . 17 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑥))
763adantr3 1215 . . . . . . . . . . . . . . . 16 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑥))
8 breq2 4587 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
98anbi2d 736 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧)))
109notbid 307 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (¬ (𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ¬ (𝑥𝑅𝑦𝑦𝑅𝑧)))
117, 10syl5ibcom 234 . . . . . . . . . . . . . . 15 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥 = 𝑧 → ¬ (𝑥𝑅𝑦𝑦𝑅𝑧)))
12 pm2.21 119 . . . . . . . . . . . . . . 15 (¬ (𝑥𝑅𝑦𝑦𝑅𝑧) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1311, 12syl6 34 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥 = 𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
14 fr3nr 6871 . . . . . . . . . . . . . . . . 17 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥))
15 df-3an 1033 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑧) ∧ 𝑧𝑅𝑥))
1615biimpri 217 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑅𝑦𝑦𝑅𝑧) ∧ 𝑧𝑅𝑥) → (𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥))
1716ancoms 468 . . . . . . . . . . . . . . . . 17 ((𝑧𝑅𝑥 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → (𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥))
1814, 17nsyl 134 . . . . . . . . . . . . . . . 16 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ (𝑧𝑅𝑥 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)))
1918pm2.21d 117 . . . . . . . . . . . . . . 15 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑧𝑅𝑥 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧))
2019expd 451 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑧𝑅𝑥 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
215, 13, 203jaod 1384 . . . . . . . . . . . . 13 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
22 frirr 5015 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
23223ad2antr1 1219 . . . . . . . . . . . . 13 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ 𝑥𝑅𝑥)
2421, 23jctild 564 . . . . . . . . . . . 12 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
2524ex 449 . . . . . . . . . . 11 (𝑅 Fr 𝐴 → ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
2625a2d 29 . . . . . . . . . 10 (𝑅 Fr 𝐴 → (((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)) → ((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
2726alimdv 1832 . . . . . . . . 9 (𝑅 Fr 𝐴 → (∀𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)) → ∀𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
28272alimdv 1834 . . . . . . . 8 (𝑅 Fr 𝐴 → (∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)) → ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
29 r3al 2924 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)))
30 r3al 2924 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
3128, 29, 303imtr4g 284 . . . . . . 7 (𝑅 Fr 𝐴 → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
32 ralidm 4027 . . . . . . . . 9 (∀𝑦𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
33 breq2 4587 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑥𝑅𝑦𝑥𝑅𝑧))
34 equequ2 1940 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
35 breq1 4586 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
3633, 34, 353orbi123d 1390 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)))
3736cbvralv 3147 . . . . . . . . . 10 (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
3837ralbii 2963 . . . . . . . . 9 (∀𝑦𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
3932, 38bitr3i 265 . . . . . . . 8 (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
4039ralbii 2963 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
41 df-po 4959 . . . . . . 7 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
4231, 40, 413imtr4g 284 . . . . . 6 (𝑅 Fr 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → 𝑅 Po 𝐴))
4342ancrd 575 . . . . 5 (𝑅 Fr 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
443, 43impbid2 215 . . . 4 (𝑅 Fr 𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
452, 44syl5bb 271 . . 3 (𝑅 Fr 𝐴 → (𝑅 Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
4645pm5.32i 667 . 2 ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
471, 46bitri 263 1 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3o 1030  w3a 1031  wal 1473  wcel 1977  wral 2896   class class class wbr 4583   Po wpo 4957   Or wor 4958   Fr wfr 4994   We wwe 4996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-po 4959  df-so 4960  df-fr 4997  df-we 4999
This theorem is referenced by:  ordon  6874  f1oweALT  7043  dford2  8400  fpwwe2lem12  9342  fpwwe2lem13  9343  dfon2  30941  fnwe2  36641
  Copyright terms: Public domain W3C validator