MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1b Structured version   Visualization version   GIF version

Theorem cantnflem1b 8466
Description: Lemma for cantnf 8473. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
cantnflem1.o 𝑂 = OrdIso( E , (𝐺 supp ∅))
Assertion
Ref Expression
cantnflem1b ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑋 ⊆ (𝑂𝑢))
Distinct variable groups:   𝑢,𝑐,𝑤,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑢,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐,𝑢   𝑢,𝐹,𝑤,𝑥,𝑦,𝑧   𝑆,𝑐,𝑢,𝑥,𝑦,𝑧   𝐺,𝑐,𝑢,𝑤,𝑥,𝑦,𝑧   𝑢,𝑂,𝑤,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢,𝑋,𝑤,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑂(𝑐)   𝑋(𝑐)

Proof of Theorem cantnflem1b
StepHypRef Expression
1 simprr 792 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑋) ⊆ 𝑢)
2 cantnflem1.o . . . . . . . 8 𝑂 = OrdIso( E , (𝐺 supp ∅))
32oicl 8317 . . . . . . 7 Ord dom 𝑂
4 cantnfs.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ On)
5 suppssdm 7195 . . . . . . . . . . . . 13 (𝐺 supp ∅) ⊆ dom 𝐺
6 oemapval.g . . . . . . . . . . . . . . . 16 (𝜑𝐺𝑆)
7 cantnfs.s . . . . . . . . . . . . . . . . 17 𝑆 = dom (𝐴 CNF 𝐵)
8 cantnfs.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ On)
97, 8, 4cantnfs 8446 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
106, 9mpbid 221 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1110simpld 474 . . . . . . . . . . . . . 14 (𝜑𝐺:𝐵𝐴)
12 fdm 5964 . . . . . . . . . . . . . 14 (𝐺:𝐵𝐴 → dom 𝐺 = 𝐵)
1311, 12syl 17 . . . . . . . . . . . . 13 (𝜑 → dom 𝐺 = 𝐵)
145, 13syl5sseq 3616 . . . . . . . . . . . 12 (𝜑 → (𝐺 supp ∅) ⊆ 𝐵)
154, 14ssexd 4733 . . . . . . . . . . 11 (𝜑 → (𝐺 supp ∅) ∈ V)
167, 8, 4, 2, 6cantnfcl 8447 . . . . . . . . . . . 12 (𝜑 → ( E We (𝐺 supp ∅) ∧ dom 𝑂 ∈ ω))
1716simpld 474 . . . . . . . . . . 11 (𝜑 → E We (𝐺 supp ∅))
182oiiso 8325 . . . . . . . . . . 11 (((𝐺 supp ∅) ∈ V ∧ E We (𝐺 supp ∅)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
1915, 17, 18syl2anc 691 . . . . . . . . . 10 (𝜑𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
20 isof1o 6473 . . . . . . . . . 10 (𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) → 𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅))
2119, 20syl 17 . . . . . . . . 9 (𝜑𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅))
22 f1ocnv 6062 . . . . . . . . 9 (𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅) → 𝑂:(𝐺 supp ∅)–1-1-onto→dom 𝑂)
23 f1of 6050 . . . . . . . . 9 (𝑂:(𝐺 supp ∅)–1-1-onto→dom 𝑂𝑂:(𝐺 supp ∅)⟶dom 𝑂)
2421, 22, 233syl 18 . . . . . . . 8 (𝜑𝑂:(𝐺 supp ∅)⟶dom 𝑂)
25 oemapval.t . . . . . . . . 9 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
26 oemapval.f . . . . . . . . 9 (𝜑𝐹𝑆)
27 oemapvali.r . . . . . . . . 9 (𝜑𝐹𝑇𝐺)
28 oemapvali.x . . . . . . . . 9 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
297, 8, 4, 25, 26, 6, 27, 28cantnflem1a 8465 . . . . . . . 8 (𝜑𝑋 ∈ (𝐺 supp ∅))
3024, 29ffvelrnd 6268 . . . . . . 7 (𝜑 → (𝑂𝑋) ∈ dom 𝑂)
31 ordelon 5664 . . . . . . 7 ((Ord dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂) → (𝑂𝑋) ∈ On)
323, 30, 31sylancr 694 . . . . . 6 (𝜑 → (𝑂𝑋) ∈ On)
3332adantr 480 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑋) ∈ On)
343a1i 11 . . . . . . . 8 (𝜑 → Ord dom 𝑂)
35 ordelon 5664 . . . . . . . 8 ((Ord dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On)
3634, 35sylan 487 . . . . . . 7 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On)
37 sucelon 6909 . . . . . . 7 (𝑢 ∈ On ↔ suc 𝑢 ∈ On)
3836, 37sylibr 223 . . . . . 6 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ On)
3938adantrr 749 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑢 ∈ On)
40 ontri1 5674 . . . . 5 (((𝑂𝑋) ∈ On ∧ 𝑢 ∈ On) → ((𝑂𝑋) ⊆ 𝑢 ↔ ¬ 𝑢 ∈ (𝑂𝑋)))
4133, 39, 40syl2anc 691 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝑂𝑋) ⊆ 𝑢 ↔ ¬ 𝑢 ∈ (𝑂𝑋)))
421, 41mpbid 221 . . 3 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ¬ 𝑢 ∈ (𝑂𝑋))
4319adantr 480 . . . . . 6 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
44 ordtr 5654 . . . . . . . 8 (Ord dom 𝑂 → Tr dom 𝑂)
453, 44mp1i 13 . . . . . . 7 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → Tr dom 𝑂)
46 simprl 790 . . . . . . 7 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → suc 𝑢 ∈ dom 𝑂)
47 trsuc 5727 . . . . . . 7 ((Tr dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ dom 𝑂)
4845, 46, 47syl2anc 691 . . . . . 6 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑢 ∈ dom 𝑂)
4930adantr 480 . . . . . 6 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑋) ∈ dom 𝑂)
50 isorel 6476 . . . . . 6 ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂)) → (𝑢 E (𝑂𝑋) ↔ (𝑂𝑢) E (𝑂‘(𝑂𝑋))))
5143, 48, 49, 50syl12anc 1316 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑢 E (𝑂𝑋) ↔ (𝑂𝑢) E (𝑂‘(𝑂𝑋))))
52 fvex 6113 . . . . . 6 (𝑂𝑋) ∈ V
5352epelc 4951 . . . . 5 (𝑢 E (𝑂𝑋) ↔ 𝑢 ∈ (𝑂𝑋))
54 fvex 6113 . . . . . 6 (𝑂‘(𝑂𝑋)) ∈ V
5554epelc 4951 . . . . 5 ((𝑂𝑢) E (𝑂‘(𝑂𝑋)) ↔ (𝑂𝑢) ∈ (𝑂‘(𝑂𝑋)))
5651, 53, 553bitr3g 301 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑢 ∈ (𝑂𝑋) ↔ (𝑂𝑢) ∈ (𝑂‘(𝑂𝑋))))
57 f1ocnvfv2 6433 . . . . . . 7 ((𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅) ∧ 𝑋 ∈ (𝐺 supp ∅)) → (𝑂‘(𝑂𝑋)) = 𝑋)
5821, 29, 57syl2anc 691 . . . . . 6 (𝜑 → (𝑂‘(𝑂𝑋)) = 𝑋)
5958adantr 480 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂‘(𝑂𝑋)) = 𝑋)
6059eleq2d 2673 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝑂𝑢) ∈ (𝑂‘(𝑂𝑋)) ↔ (𝑂𝑢) ∈ 𝑋))
6156, 60bitrd 267 . . 3 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑢 ∈ (𝑂𝑋) ↔ (𝑂𝑢) ∈ 𝑋))
6242, 61mtbid 313 . 2 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ¬ (𝑂𝑢) ∈ 𝑋)
637, 8, 4, 25, 26, 6, 27, 28oemapvali 8464 . . . . . 6 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
6463simp1d 1066 . . . . 5 (𝜑𝑋𝐵)
65 onelon 5665 . . . . 5 ((𝐵 ∈ On ∧ 𝑋𝐵) → 𝑋 ∈ On)
664, 64, 65syl2anc 691 . . . 4 (𝜑𝑋 ∈ On)
6766adantr 480 . . 3 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑋 ∈ On)
684adantr 480 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝐵 ∈ On)
6914adantr 480 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝐺 supp ∅) ⊆ 𝐵)
702oif 8318 . . . . . . 7 𝑂:dom 𝑂⟶(𝐺 supp ∅)
7170ffvelrni 6266 . . . . . 6 (𝑢 ∈ dom 𝑂 → (𝑂𝑢) ∈ (𝐺 supp ∅))
7248, 71syl 17 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑢) ∈ (𝐺 supp ∅))
7369, 72sseldd 3569 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑢) ∈ 𝐵)
74 onelon 5665 . . . 4 ((𝐵 ∈ On ∧ (𝑂𝑢) ∈ 𝐵) → (𝑂𝑢) ∈ On)
7568, 73, 74syl2anc 691 . . 3 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑢) ∈ On)
76 ontri1 5674 . . 3 ((𝑋 ∈ On ∧ (𝑂𝑢) ∈ On) → (𝑋 ⊆ (𝑂𝑢) ↔ ¬ (𝑂𝑢) ∈ 𝑋))
7767, 75, 76syl2anc 691 . 2 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑋 ⊆ (𝑂𝑢) ↔ ¬ (𝑂𝑢) ∈ 𝑋))
7862, 77mpbird 246 1 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑋 ⊆ (𝑂𝑢))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  c0 3874   cuni 4372   class class class wbr 4583  {copab 4642  Tr wtr 4680   E cep 4947   We wwe 4996  ccnv 5037  dom cdm 5038  Ord word 5639  Oncon0 5640  suc csuc 5642  wf 5800  1-1-ontowf1o 5803  cfv 5804   Isom wiso 5805  (class class class)co 6549  ωcom 6957   supp csupp 7182   finSupp cfsupp 8158  OrdIsocoi 8297   CNF ccnf 8441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-1o 7447  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-cnf 8442
This theorem is referenced by:  cantnflem1c  8467
  Copyright terms: Public domain W3C validator