 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  spimeh GIF version

Theorem spimeh 1627
 Description: Existential introduction, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by NM, 3-Feb-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
spimeh.1 (𝜑 → ∀𝑥𝜑)
spimeh.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimeh (𝜑 → ∃𝑥𝜓)

Proof of Theorem spimeh
StepHypRef Expression
1 a9e 1586 . 2 𝑥 𝑥 = 𝑦
2 spimeh.1 . . 3 (𝜑 → ∀𝑥𝜑)
3 spimeh.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43com12 27 . . 3 (𝜑 → (𝑥 = 𝑦𝜓))
52, 4eximdh 1502 . 2 (𝜑 → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜓))
61, 5mpi 15 1 (𝜑 → ∃𝑥𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4  ∀wal 1241   = wceq 1243  ∃wex 1381 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-i9 1423  ax-ial 1427 This theorem depends on definitions:  df-bi 110 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator