![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.32d | GIF version |
Description: Distribution of implication over biconditional (deduction rule). (Contributed by NM, 29-Oct-1996.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (φ → (ψ → (χ ↔ θ))) |
Ref | Expression |
---|---|
pm5.32d | ⊢ (φ → ((ψ ∧ χ) ↔ (ψ ∧ θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . . . 4 ⊢ (φ → (ψ → (χ ↔ θ))) | |
2 | bi1 111 | . . . 4 ⊢ ((χ ↔ θ) → (χ → θ)) | |
3 | 1, 2 | syl6 29 | . . 3 ⊢ (φ → (ψ → (χ → θ))) |
4 | 3 | imdistand 421 | . 2 ⊢ (φ → ((ψ ∧ χ) → (ψ ∧ θ))) |
5 | bi2 121 | . . . 4 ⊢ ((χ ↔ θ) → (θ → χ)) | |
6 | 1, 5 | syl6 29 | . . 3 ⊢ (φ → (ψ → (θ → χ))) |
7 | 6 | imdistand 421 | . 2 ⊢ (φ → ((ψ ∧ θ) → (ψ ∧ χ))) |
8 | 4, 7 | impbid 120 | 1 ⊢ (φ → ((ψ ∧ χ) ↔ (ψ ∧ θ))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: pm5.32rd 424 pm5.32da 425 pm5.32 426 anbi2d 437 cbvex2 1794 cores 4767 isoini 5400 mpt2eq123 5506 genpassl 6507 genpassu 6508 fzind 8129 btwnz 8133 elfzm11 8723 |
Copyright terms: Public domain | W3C validator |