Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.61ddc GIF version

Theorem pm2.61ddc 758
 Description: Deduction eliminating a decidable antecedent. (Contributed by Jim Kingdon, 4-May-2018.)
Hypotheses
Ref Expression
pm2.61ddc.1 (𝜑 → (𝜓𝜒))
pm2.61ddc.2 (𝜑 → (¬ 𝜓𝜒))
Assertion
Ref Expression
pm2.61ddc (DECID 𝜓 → (𝜑𝜒))

Proof of Theorem pm2.61ddc
StepHypRef Expression
1 df-dc 743 . 2 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
2 pm2.61ddc.1 . . . 4 (𝜑 → (𝜓𝜒))
32com12 27 . . 3 (𝜓 → (𝜑𝜒))
4 pm2.61ddc.2 . . . 4 (𝜑 → (¬ 𝜓𝜒))
54com12 27 . . 3 𝜓 → (𝜑𝜒))
63, 5jaoi 636 . 2 ((𝜓 ∨ ¬ 𝜓) → (𝜑𝜒))
71, 6sylbi 114 1 (DECID 𝜓 → (𝜑𝜒))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 629  DECID wdc 742 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630 This theorem depends on definitions:  df-bi 110  df-dc 743 This theorem is referenced by:  bijadc  776
 Copyright terms: Public domain W3C validator