Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.61ddc | GIF version |
Description: Deduction eliminating a decidable antecedent. (Contributed by Jim Kingdon, 4-May-2018.) |
Ref | Expression |
---|---|
pm2.61ddc.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
pm2.61ddc.2 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
pm2.61ddc | ⊢ (DECID 𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 743 | . 2 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
2 | pm2.61ddc.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 2 | com12 27 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜒)) |
4 | pm2.61ddc.2 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
5 | 4 | com12 27 | . . 3 ⊢ (¬ 𝜓 → (𝜑 → 𝜒)) |
6 | 3, 5 | jaoi 636 | . 2 ⊢ ((𝜓 ∨ ¬ 𝜓) → (𝜑 → 𝜒)) |
7 | 1, 6 | sylbi 114 | 1 ⊢ (DECID 𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 629 DECID wdc 742 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 |
This theorem depends on definitions: df-bi 110 df-dc 743 |
This theorem is referenced by: bijadc 776 |
Copyright terms: Public domain | W3C validator |