ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.61ddc Unicode version

Theorem pm2.61ddc 758
Description: Deduction eliminating a decidable antecedent. (Contributed by Jim Kingdon, 4-May-2018.)
Hypotheses
Ref Expression
pm2.61ddc.1  |-  ( ph  ->  ( ps  ->  ch ) )
pm2.61ddc.2  |-  ( ph  ->  ( -.  ps  ->  ch ) )
Assertion
Ref Expression
pm2.61ddc  |-  (DECID  ps  ->  (
ph  ->  ch ) )

Proof of Theorem pm2.61ddc
StepHypRef Expression
1 df-dc 743 . 2  |-  (DECID  ps  <->  ( ps  \/  -.  ps ) )
2 pm2.61ddc.1 . . . 4  |-  ( ph  ->  ( ps  ->  ch ) )
32com12 27 . . 3  |-  ( ps 
->  ( ph  ->  ch ) )
4 pm2.61ddc.2 . . . 4  |-  ( ph  ->  ( -.  ps  ->  ch ) )
54com12 27 . . 3  |-  ( -. 
ps  ->  ( ph  ->  ch ) )
63, 5jaoi 636 . 2  |-  ( ( ps  \/  -.  ps )  ->  ( ph  ->  ch ) )
71, 6sylbi 114 1  |-  (DECID  ps  ->  (
ph  ->  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 629  DECID wdc 742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630
This theorem depends on definitions:  df-bi 110  df-dc 743
This theorem is referenced by:  bijadc  776
  Copyright terms: Public domain W3C validator