ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.24 Structured version   GIF version

Theorem pm2.24 539
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.24 (φ → (¬ φψ))

Proof of Theorem pm2.24
StepHypRef Expression
1 pm2.21 535 . 2 φ → (φψ))
21com12 27 1 (φ → (¬ φψ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-in2 533
This theorem is referenced by:  pm2.24d  540  pm2.53  628  pm2.82  712  pm4.81dc  807  dedlema  864  alexim  1518  sotritric  4035  ltxrlt  6686
  Copyright terms: Public domain W3C validator