ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim1i Structured version   GIF version

Theorem orim1i 664
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
Hypothesis
Ref Expression
orim1i.1 (φψ)
Assertion
Ref Expression
orim1i ((φ χ) → (ψ χ))

Proof of Theorem orim1i
StepHypRef Expression
1 orim1i.1 . 2 (φψ)
2 id 19 . 2 (χχ)
31, 2orim12i 663 1 ((φ χ) → (ψ χ))
Colors of variables: wff set class
Syntax hints:  wi 4   wo 616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  dcimptest  744  19.34  1556  dveeq2or  1679  sbequilem  1701  sbequi  1702  dvelimALT  1868  dvelimfv  1869  dvelimor  1876  r19.45av  2448  acexmidlemcase  5431
  Copyright terms: Public domain W3C validator