![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orim1i | GIF version |
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
orim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
orim1i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | 1, 2 | orim12i 676 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 629 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: 19.34 1574 dveeq2or 1697 sbequilem 1719 sbequi 1720 dvelimALT 1886 dvelimfv 1887 dvelimor 1894 r19.45av 2470 acexmidlemcase 5507 nnm1nn0 8223 |
Copyright terms: Public domain | W3C validator |