 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon4biddc GIF version

Theorem necon4biddc 2280
 Description: Contrapositive law deduction for inequality. (Contributed by Jim Kingdon, 19-May-2018.)
Hypothesis
Ref Expression
necon4biddc.1 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝐶 = 𝐷 → (𝐴𝐵𝐶𝐷))))
Assertion
Ref Expression
necon4biddc (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝐶 = 𝐷 → (𝐴 = 𝐵𝐶 = 𝐷))))

Proof of Theorem necon4biddc
StepHypRef Expression
1 necon4biddc.1 . . 3 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝐶 = 𝐷 → (𝐴𝐵𝐶𝐷))))
2 df-ne 2206 . . . 4 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
32bibi2i 216 . . 3 ((𝐴𝐵𝐶𝐷) ↔ (𝐴𝐵 ↔ ¬ 𝐶 = 𝐷))
41, 3syl8ib 155 . 2 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝐶 = 𝐷 → (𝐴𝐵 ↔ ¬ 𝐶 = 𝐷))))
54necon4abiddc 2278 1 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝐶 = 𝐷 → (𝐴 = 𝐵𝐶 = 𝐷))))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 98  DECID wdc 742   = wceq 1243   ≠ wne 2204 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 630 This theorem depends on definitions:  df-bi 110  df-dc 743  df-ne 2206 This theorem is referenced by:  nebidc  2285
 Copyright terms: Public domain W3C validator