Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bibi2i | GIF version |
Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
Ref | Expression |
---|---|
bibi.a | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bibi2i | ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜑)) | |
2 | bibi.a | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | syl6bb 185 | . 2 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜓)) |
4 | id 19 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
5 | 4, 2 | syl6bbr 187 | . 2 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜑)) |
6 | 3, 5 | impbii 117 | 1 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: bibi1i 217 bibi12i 218 bibi2d 221 pm4.71r 370 sblbis 1834 sbrbif 1836 abeq2 2146 abid2f 2202 necon4biddc 2280 pm13.183 2681 disj3 3272 euabsn2 3439 a9evsep 3879 inex1 3891 zfpair2 3945 sucel 4147 bdinex1 10019 bj-zfpair2 10030 bj-d0clsepcl 10049 |
Copyright terms: Public domain | W3C validator |