ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falbifal GIF version

Theorem falbifal 1309
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falbifal ((⊥ ↔ ⊥) ↔ ⊤)

Proof of Theorem falbifal
StepHypRef Expression
1 biid 160 . 2 (⊥ ↔ ⊥)
21bitru 1255 1 ((⊥ ↔ ⊥) ↔ ⊤)
Colors of variables: wff set class
Syntax hints:  wb 98  wtru 1244  wfal 1248
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-tru 1246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator