Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > falbifal | GIF version |
Description: A ↔ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
falbifal | ⊢ ((⊥ ↔ ⊥) ↔ ⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 160 | . 2 ⊢ (⊥ ↔ ⊥) | |
2 | 1 | bitru 1255 | 1 ⊢ ((⊥ ↔ ⊥) ↔ ⊤) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 ⊤wtru 1244 ⊥wfal 1248 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 df-tru 1246 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |