ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitru Structured version   GIF version

Theorem bitru 1254
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1 φ
Assertion
Ref Expression
bitru (φ ↔ ⊤ )

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2 φ
2 tru 1246 . 2
31, 22th 163 1 (φ ↔ ⊤ )
Colors of variables: wff set class
Syntax hints:  wb 98  wtru 1243
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-tru 1245
This theorem is referenced by:  truorfal  1294  falortru  1295  truimtru  1297  falimtru  1299  falimfal  1300  notfal  1302  trubitru  1303  falbifal  1306
  Copyright terms: Public domain W3C validator