ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp5c Structured version   GIF version

Theorem exp5c 358
Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
Hypothesis
Ref Expression
exp5c.1 (φ → ((ψ χ) → ((θ τ) → η)))
Assertion
Ref Expression
exp5c (φ → (ψ → (χ → (θ → (τη)))))

Proof of Theorem exp5c
StepHypRef Expression
1 exp5c.1 . . 3 (φ → ((ψ χ) → ((θ τ) → η)))
21exp4a 348 . 2 (φ → ((ψ χ) → (θ → (τη))))
32expd 245 1 (φ → (ψ → (χ → (θ → (τη)))))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator