Proof of Theorem con4biddc
Step | Hyp | Ref
| Expression |
1 | | con4biddc.1 |
. . . . . 6
⊢ (φ → (DECID ψ → (DECID χ → (¬ ψ ↔ ¬ χ)))) |
2 | | bi2 121 |
. . . . . 6
⊢ ((¬
ψ ↔ ¬ χ) → (¬ χ → ¬ ψ)) |
3 | 1, 2 | syl8 65 |
. . . . 5
⊢ (φ → (DECID ψ → (DECID χ → (¬ χ → ¬ ψ)))) |
4 | | condc 748 |
. . . . . 6
⊢
(DECID χ →
((¬ χ → ¬ ψ) → (ψ → χ))) |
5 | 4 | a2i 11 |
. . . . 5
⊢
((DECID χ →
(¬ χ → ¬ ψ)) → (DECID χ → (ψ → χ))) |
6 | 3, 5 | syl6 29 |
. . . 4
⊢ (φ → (DECID ψ → (DECID χ → (ψ → χ)))) |
7 | 6 | imp31 243 |
. . 3
⊢ (((φ ∧
DECID ψ) ∧ DECID χ) → (ψ → χ)) |
8 | | bi1 111 |
. . . . . 6
⊢ ((¬
ψ ↔ ¬ χ) → (¬ ψ → ¬ χ)) |
9 | 1, 8 | syl8 65 |
. . . . 5
⊢ (φ → (DECID ψ → (DECID χ → (¬ ψ → ¬ χ)))) |
10 | | condc 748 |
. . . . . 6
⊢
(DECID ψ →
((¬ ψ → ¬ χ) → (χ → ψ))) |
11 | 10 | imim2d 48 |
. . . . 5
⊢
(DECID ψ →
((DECID χ → (¬
ψ → ¬ χ)) → (DECID χ → (χ → ψ)))) |
12 | 9, 11 | sylcom 25 |
. . . 4
⊢ (φ → (DECID ψ → (DECID χ → (χ → ψ)))) |
13 | 12 | imp31 243 |
. . 3
⊢ (((φ ∧
DECID ψ) ∧ DECID χ) → (χ → ψ)) |
14 | 7, 13 | impbid 120 |
. 2
⊢ (((φ ∧
DECID ψ) ∧ DECID χ) → (ψ ↔ χ)) |
15 | 14 | exp31 346 |
1
⊢ (φ → (DECID ψ → (DECID χ → (ψ ↔ χ)))) |