Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bamalip | GIF version |
Description: "Bamalip", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜓 is 𝜒, and 𝜑 exist, therefore some 𝜒 is 𝜑. (In Aristotelian notation, AAI-4: PaM and MaS therefore SiP.) Like barbari 2002. (Contributed by David A. Wheeler, 28-Aug-2016.) |
Ref | Expression |
---|---|
bamalip.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
bamalip.min | ⊢ ∀𝑥(𝜓 → 𝜒) |
bamalip.e | ⊢ ∃𝑥𝜑 |
Ref | Expression |
---|---|
bamalip | ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bamalip.e | . 2 ⊢ ∃𝑥𝜑 | |
2 | bamalip.maj | . . . . 5 ⊢ ∀𝑥(𝜑 → 𝜓) | |
3 | 2 | spi 1429 | . . . 4 ⊢ (𝜑 → 𝜓) |
4 | bamalip.min | . . . . 5 ⊢ ∀𝑥(𝜓 → 𝜒) | |
5 | 4 | spi 1429 | . . . 4 ⊢ (𝜓 → 𝜒) |
6 | 3, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝜒) |
7 | 6 | ancri 307 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜑)) |
8 | 1, 7 | eximii 1493 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∀wal 1241 ∃wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |