ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancri Structured version   GIF version

Theorem ancri 307
Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.)
Hypothesis
Ref Expression
ancri.1 (φψ)
Assertion
Ref Expression
ancri (φ → (ψ φ))

Proof of Theorem ancri
StepHypRef Expression
1 ancri.1 . 2 (φψ)
2 id 19 . 2 (φφ)
31, 2jca 290 1 (φ → (ψ φ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101
This theorem is referenced by:  orabsOLD  715  truanOLD  1244  bamalip  1999  gencbvex  2573  mosubt  2691  trsuc  4105  eusv2nf  4134  mosubopt  4328  issref  4630  fo00  5083  eqfnov2  5527
  Copyright terms: Public domain W3C validator