ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anabs5 GIF version

Theorem anabs5 507
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
Assertion
Ref Expression
anabs5 ((φ (φ ψ)) ↔ (φ ψ))

Proof of Theorem anabs5
StepHypRef Expression
1 ibar 285 . . 3 (φ → (ψ ↔ (φ ψ)))
21bicomd 129 . 2 (φ → ((φ ψ) ↔ ψ))
32pm5.32i 427 1 ((φ (φ ψ)) ↔ (φ ψ))
Colors of variables: wff set class
Syntax hints:   wa 97  wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  mo3h  1950  indif  3174  axsep2  3867
  Copyright terms: Public domain W3C validator