![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alrot4 | GIF version |
Description: Rotate 4 universal quantifiers twice. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Wolf Lammen, 28-Jun-2014.) |
Ref | Expression |
---|---|
alrot4 | ⊢ (∀𝑥∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑧∀𝑤∀𝑥∀𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrot3 1374 | . . 3 ⊢ (∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑧∀𝑤∀𝑦𝜑) | |
2 | 1 | albii 1359 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑥∀𝑧∀𝑤∀𝑦𝜑) |
3 | alcom 1367 | . 2 ⊢ (∀𝑥∀𝑧∀𝑤∀𝑦𝜑 ↔ ∀𝑧∀𝑥∀𝑤∀𝑦𝜑) | |
4 | alcom 1367 | . . 3 ⊢ (∀𝑥∀𝑤∀𝑦𝜑 ↔ ∀𝑤∀𝑥∀𝑦𝜑) | |
5 | 4 | albii 1359 | . 2 ⊢ (∀𝑧∀𝑥∀𝑤∀𝑦𝜑 ↔ ∀𝑧∀𝑤∀𝑥∀𝑦𝜑) |
6 | 2, 3, 5 | 3bitri 195 | 1 ⊢ (∀𝑥∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑧∀𝑤∀𝑥∀𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 ∀wal 1241 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: fun11 4966 |
Copyright terms: Public domain | W3C validator |