ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3orrot Structured version   GIF version

Theorem 3orrot 890
Description: Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3orrot ((φ ψ χ) ↔ (ψ χ φ))

Proof of Theorem 3orrot
StepHypRef Expression
1 orcom 646 . 2 ((φ (ψ χ)) ↔ ((ψ χ) φ))
2 3orass 887 . 2 ((φ ψ χ) ↔ (φ (ψ χ)))
3 df-3or 885 . 2 ((ψ χ φ) ↔ ((ψ χ) φ))
41, 2, 33bitr4i 201 1 ((φ ψ χ) ↔ (ψ χ φ))
Colors of variables: wff set class
Syntax hints:  wb 98   wo 628   w3o 883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629
This theorem depends on definitions:  df-bi 110  df-3or 885
This theorem is referenced by:  3mix2  1073  3mix3  1074  eueq3dc  2709  tprot  3454  sotritrieq  4053  elnnz  8031  elznn  8037  ztri3or0  8063  zapne  8091
  Copyright terms: Public domain W3C validator