ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23 Structured version   GIF version

Theorem 19.23 1550
Description: Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.23.1 xψ
Assertion
Ref Expression
19.23 (x(φψ) ↔ (xφψ))

Proof of Theorem 19.23
StepHypRef Expression
1 19.23.1 . 2 xψ
2 19.23t 1549 . 2 (Ⅎxψ → (x(φψ) ↔ (xφψ)))
31, 2ax-mp 7 1 (x(φψ) ↔ (xφψ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wal 1226  wnf 1329  wex 1362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1316  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-4 1381  ax-ial 1409  ax-i5r 1410
This theorem depends on definitions:  df-bi 110  df-nf 1330
This theorem is referenced by:  equsal  1597  r19.3rmOLD  3287  r19.3rm  3289  ralidm  3300
  Copyright terms: Public domain W3C validator